Local regularity of solutions of variational problems for the equilibrium configuration of an incompressible, multiphase elastic body

被引:2
作者
Bildhauer, M [1 ]
Fuchs, M
Seregin, G
机构
[1] Univ Saarland, Fachbereich Math, D-66041 Saarbrucken, Germany
[2] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2001年 / 8卷 / 01期
关键词
non convex variational problems; relaxation; minima; regularity; multiphase elastic bodies;
D O I
10.1007/PL00001439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a multiphase, incompressible, elastic body with k preferred states: whose equilibrium configuration is described in terms of a nonconvex variational problem. We pass to a suitable relaxed variational integral whose solution has the meaning of the strain tenser and also study the associated dual problem for the stresses. At first we show that the strain tenser is smooth near any point of strict J(m)(1)-quasiconvexity of the relaxed integrand. Then we use this result to get regularity of the stress tenser on the union of pure phases at least in the two-dimensional case.
引用
收藏
页码:53 / 81
页数:29
相关论文
共 16 条
[1]  
[Anonymous], ANN SC NORM SUPER PI
[2]   CONVEX FUNCTIONALS AND PARTIAL REGULARITY [J].
ANZELLOTTI, G ;
GIAQUINTA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 102 (03) :243-272
[3]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[4]  
BILDHAUER M, 1999, 58 M PLANCK I MATH N
[5]  
DACOROGNA B, 1989, APPL MATH SCI, V78
[6]  
Ekeland I., 1976, STUDIES MATH ITS APP, V1
[7]  
Fuchs M, 2000, J CONVEX ANAL, V7, P209
[8]  
Fuchs M., 2000, SPRINGER LECT NOTES, V1749
[9]  
Giaquinta M, 1983, MULTIPLE INTEGRALS C
[10]   THE RELAXATION OF A DOUBLE-WELL ENERGY [J].
KOHN, RV .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1991, 3 (03) :193-236