Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links

被引:268
作者
Kim, S
Healy, KE
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1021/bm0340467
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with peptide cross-linkers to create an artificial extracellular matrix (ECM) amenable for testing hypotheses regarding cell proliferation and migration in three dimensions. Peptide degradable cross-linkers were synthesized by the acrylation of the amine groups of glutamine and lysine residues within peptide sequences potentially cleavable by matrix metalloproteinases synthesized by mammalian cells (e.g., osteoblasts). With the peptide cross-linker, loosely cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, and enzymatic degradation properties were investigated. The peptide-cross-linked P(NIPAAm-co-AAc) hydrogels were pliable and fluidlike at room temperature and could be injected through a small-diameter aperture. The LCST of peptide-cross-linked hydrogel was influenced by the monomer ratio of NIPAAm/AAc but not by cross-linking density within the polymer network. A peptide-cross-linked hydrogel with a 97/3 molar ratio of NIPAAm/AAc exhibited a LCST of similar to34.5 degreesC. Swelling was influenced by NIPAAm/AAc monomer ratio, cross-linking density, and swelling media; however, all hydrogels maintained more than 90% water even at 37 degreesC. In enzymatic degradation studies, breakdown of the peptide-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on both the concentration of collagenase and the cross-linking density. These results suggest that peptide-cross-linked P(NIPAAm-co-AAc) hydrogels can be tailored to create environmentally-responsive artificial extracellular matrixes that are degraded by proteases.
引用
收藏
页码:1214 / 1223
页数:10
相关论文
共 74 条
[1]  
Agrawal CM, 2001, J BIOMED MATER RES, V55, P141, DOI 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO
[2]  
2-J
[3]   In situ forming degradable networks and their application in tissue engineering and drug delivery [J].
Anseth, KS ;
Metters, AT ;
Bryant, SJ ;
Martens, PJ ;
Elisseeff, JH ;
Bowman, CN .
JOURNAL OF CONTROLLED RELEASE, 2002, 78 (1-3) :199-209
[4]   INJECTABLE ALGINATE SEEDED WITH CHONDROCYTES AS A POTENTIAL TREATMENT FOR VESICOURETERAL REFLUX [J].
ATALA, A ;
CIMA, LG ;
KIM, W ;
PAIGE, KT ;
VACANTI, JP ;
RETIK, AB ;
VACANTI, CA .
JOURNAL OF UROLOGY, 1993, 150 (02) :745-747
[5]  
Bilezikian J. P., 1996, PRINCIPLES BONE BIOL
[6]   Time dependent properties of thermoreversible gels [J].
Borchard, W ;
Lechtenfeld, M .
MATERIALS RESEARCH INNOVATIONS, 2001, 4 (5-6) :381-387
[7]   THE DETERMINATION OF EPSILON-AMINO GROUPS IN SOLUBLE AND POORLY SOLUBLE PROTEINACEOUS MATERIALS BY A SPECTROPHOTOMETRIC METHOD USING TRINITROBENZENESULFONIC ACID [J].
BUBNIS, WA ;
OFNER, CM .
ANALYTICAL BIOCHEMISTRY, 1992, 207 (01) :129-133
[8]  
Cao YL, 1998, J BIOMAT SCI-POLYM E, V9, P475
[9]  
Chen GP, 2002, MACROMOL BIOSCI, V2, P67, DOI 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO
[10]  
2-F