Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-defined 64Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers

被引:109
作者
Pressly, Eric D.
Rossin, Raffaella
Hagooly, Aviv
Fukukawa, Ken-ichi
Messmore, Benjamin W.
Welch, Michael J. [1 ]
Wooley, Karen L.
Lamm, Matthew S.
Hule, Rohan A.
Pochan, Darrin J.
Hawker, Craig J.
机构
[1] Washington Univ, Sch Med, Div Radiol Sci, St Louis, MO 63110 USA
[2] Washington Univ, Div Chem, St Louis, MO 63110 USA
[3] Univ Calif Santa Barbara, Mat Res Lab, Dept Chem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Dept Biochem & Mat, Santa Barbara, CA 93106 USA
[5] Univ Delaware, Newark, DE 19716 USA
关键词
D O I
10.1021/bm700541e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The synthesis of poly(methyl methacrylate-co-methacryloxysuccinimide-graft-poly(ethylene glycol)) (PMMA-co-PMASI-g-PEG) via living free radical polymerization provides a convenient route to well-defined amphiphilic graft copolymers having a controllable number of reactive functional groups, variable length PEG grafts, and low polydispersity. These copolymers were shown to form PMMA-core/PEG-shell nanoparticles upon hydrophobic collapse in water, with the hydrodynamic size being defined by the molecular weight of the backbone and the PEG grafts. Functionalization of these polymeric nanoparticles with a 1,4,7,10-tetraazacyclododecanetetraacetic acid (DOTA) ligand capable of chelating radioactive Cu-64 nuclei enabled the biodistribution and in vivo positron emission tomography of these materials to be studied and directly correlated to the initial structure. Results indicate that nanoparticles with increasing PEG chain lengths show increased blood circulation and low accumulation in excretory organs, suggesting the possible use of these materials as stealth carriers for medical imaging and systemic administration.
引用
收藏
页码:3126 / 3134
页数:9
相关论文
共 41 条
[1]   Quantitative contrasts in the copolymerization of acrylate- and methacrylate-based comonomers [J].
Alb, Alina M. ;
Enohnyaket, Pascal ;
Drenski, Michael F. ;
Shunmugam, Raja ;
Tew, Gregory N. ;
Reed, Wayne F. .
MACROMOLECULES, 2006, 39 (24) :8283-8292
[2]   Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry: Theory and practice [J].
Barner, Leonie ;
Davis, Thomas P. ;
Stenzel, Martina H. ;
Barner-Kowollik, Christopher .
MACROMOLECULAR RAPID COMMUNICATIONS, 2007, 28 (05) :539-559
[3]   A NEUTRON-SCATTERING STUDY OF THE STRUCTURE OF A BIMODAL COLLOIDAL CRYSTAL [J].
BARTLETT, P ;
OTTEWILL, RH .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (04) :3306-3318
[4]   Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates [J].
Caliceti, P ;
Veronese, FM .
ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (10) :1261-1277
[5]   Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo [J].
Chen, Juan ;
Corbin, Ian R. ;
Li, Hui ;
Cao, Weiguo ;
Glickson, Jerry D. ;
Zheng, Gang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (18) :5798-+
[6]  
DRUMMOND DC, 2001, PHARMACOL REV, V53, P283
[7]   POLYSTYRENE-POLY(ETHYLENE GLYCOL) (PS-PEG2000) PARTICLES AS MODEL SYSTEMS FOR SITE-SPECIFIC DRUG-DELIVERY .2. THE EFFECT OF PEG SURFACE-DENSITY ON THE IN-VITRO CELL-INTERACTION AND IN-VIVO BIODISTRIBUTION [J].
DUNN, SE ;
BRINDLEY, A ;
DAVIS, SS ;
DAVIES, MC ;
ILLUM, L .
PHARMACEUTICAL RESEARCH, 1994, 11 (07) :1016-1022
[8]  
FUKUKAWA K, UNPUB
[9]   The 30 m small-angle neutron scattering instruments at the National Institute of Standards and Technology [J].
Glinka, CJ ;
Barker, JG ;
Hammouda, B ;
Krueger, S ;
Moyer, JJ ;
Orts, WJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1998, 31 :430-445
[10]   New polymer synthesis by nitroxide mediated living radical polymerizations [J].
Hawker, CJ ;
Bosman, AW ;
Harth, E .
CHEMICAL REVIEWS, 2001, 101 (12) :3661-3688