Molecular mechanisms responsible for aberrant splicing of SERCA1 in myotonic dystrophy type 1

被引:79
作者
Hino, Shin-ichiro
Kondo, Shinichi
Sekiya, Hiroshi
Saito, Atsushi
Kanemoto, Soshi
Murakami, Tomohiko
Chihara, Kazuyasu
Aoki, Yuri
Nakamori, Masayuki
Takahashi, Masanori P.
Imaizumi, Kazunori
机构
[1] Miyazaki Univ, Fac Med, Dept Anat, Div Mol & Cellular Biol, Miyazaki 8891692, Japan
[2] Nara Inst Sci & Technol, Div Struct Cellular Biol, Nara 6300101, Japan
[3] Osaka Univ, Grad Sch Med, Dept Neurol, Osaka, Japan
基金
日本学术振兴会;
关键词
D O I
10.1093/hmg/ddm239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disorder associated with an expansion of CTG trinucleotide repeats in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. The RNA gain-of-function hypothesis proposes that mutant DMPK mRNA alters the function and localization of alternative splicing regulators, which are critical for normal RNA processing. Previously, we found alternative splicing variants of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1), which excluded exon 22, in skeletal muscle of DM1 patients. In the present study, we analyzed the molecular mechanisms responsible for the splicing dysregulation of SERCA1. Five 'YGCU(U/G)Y' motifs that could potentially serve as Muscleblind-like 1, (MBNL1)-binding motifs, are included downstream from the SERCA1 exon 22. Exon trapping experiments showed that MBNL1 acts on the 'YGCU(U/G) Y' motif, and positively regulates exon 22 splicing. Of the five MBNL1 motifs in intron 22, the second and third sites were important for regulation of exon 22 splicing, but the other three binding sites were not required. Overexpression of the CUG repeat expansion of DMPK mRNA resulted in exclusion of exon 22 of SERCA1. These results suggest that sequestration of MBNL1 into the CUG repeat expansion of DMPK mRNA could cause the exclusion of SERCA1 exon 22, and the expression of this aberrant splicing form of SERCA1 could affect the regulation of Ca2+ concentration of sarcoplasmic reticulum in DM patients.
引用
收藏
页码:2834 / 2843
页数:10
相关论文
共 37 条
[1]   REGULATION OF SARCOPLASMIC-RETICULUM GENE-EXPRESSION DURING CARDIAC AND SKELETAL-MUSCLE DEVELOPMENT [J].
ARAI, M ;
OTSU, K ;
MACLENNAN, DH ;
PERIASAMY, M .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 262 (03) :C614-C620
[2]   The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2 [J].
Artero, R ;
Prokop, A ;
Paricio, N ;
Begemann, G ;
Pueyo, I ;
Mlodzik, M ;
Perez-Alonso, M ;
Baylies, MK .
DEVELOPMENTAL BIOLOGY, 1998, 195 (02) :131-143
[3]  
Begemann G, 1997, DEVELOPMENT, V124, P4321
[4]   2 CA-2+ ATPASE GENES - HOMOLOGIES AND MECHANISTIC IMPLICATIONS OF DEDUCED AMINO-ACID-SEQUENCES [J].
BRANDL, CJ ;
GREEN, NM ;
KORCZAK, B ;
MACLENNAN, DH .
CELL, 1986, 44 (04) :597-607
[5]  
BRANDL CJ, 1987, J BIOL CHEM, V262, P3768
[6]   MOLECULAR-BASIS OF MYOTONIC-DYSTROPHY - EXPANSION OF A TRINUCLEOTIDE (CTG) REPEAT AT THE 3' END OF A TRANSCRIPT ENCODING A PROTEIN-KINASE FAMILY MEMBER [J].
BROOK, JD ;
MCCURRACH, ME ;
HARLEY, HG ;
BUCKLER, AJ ;
CHURCH, D ;
ABURATANI, H ;
HUNTER, K ;
STANTON, VP ;
THIRION, JP ;
HUDSON, T ;
SOHN, R ;
ZEMELMAN, B ;
SNELL, RG ;
RUNDLE, SA ;
CROW, S ;
DAVIES, J ;
SHELBOURNE, P ;
BUXTON, J ;
JONES, C ;
JUVONEN, V ;
JOHNSON, K ;
HARPER, PS ;
SHAW, DJ ;
HOUSMAN, DE .
CELL, 1992, 68 (04) :799-808
[7]   Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells [J].
Buj-Bello, A ;
Furling, D ;
Tronchère, H ;
Laporte, J ;
Lerouge, T ;
Butler-Browne, GS ;
Mandel, JL .
HUMAN MOLECULAR GENETICS, 2002, 11 (19) :2297-2307
[8]  
BURK SE, 1989, J BIOL CHEM, V264, P18561
[9]   Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing [J].
Charlet-B, N ;
Savkur, RS ;
Singh, G ;
Philips, AV ;
Grice, EA ;
Cooper, TA .
MOLECULAR CELL, 2002, 10 (01) :45-53
[10]   Differential expression of calcineurin and SR Ca2+ handling proteins in equine muscle fibers during early postnatal growth [J].
Eizema, Karin ;
van der Wal, Dianne E. ;
van den Burg, Maarten M. M. ;
de Jonge, Henriette W. ;
Everts, Maria E. .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2007, 55 (03) :247-254