Wave turbulence in one-dimensional models

被引:59
作者
Zakharov, VE
Guyenne, P
Pushkarev, AN
Dias, F
机构
[1] Ecole Normale Super, Ctr Math & Leurs Appl, F-94235 Cachan, France
[2] LD Landau Theoret Phys Inst, Moscow, Russia
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[4] Inst Non Lineaire Nice, Nice, France
[5] Waves & Solitons LLC, Gilbert, AZ USA
来源
PHYSICA D | 2001年 / 152卷
关键词
weak turbulence; wave collapses; quasisolitons; kinetic wave equation; Kolmogorov spectra;
D O I
10.1016/S0167-2789(01)00194-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-parameter nonlinear dispersive wave equation proposed by Majda, McLaughlin and Tabak is studied analytically and numerically as a model for the study of wave turbulence in one-dimensional systems. Our ultimate goal is to test the validity of weak turbulence theory. Although weak turbulence theory is independent on the sign of the nonlinearity of the model, the numerical results show a strong dependence on the sign of the nonlinearity, A possible explanation for this discrepancy is the strong influence of coherent structures - wave collapses and quasisolitons - in wave turbulence. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:573 / 619
页数:47
相关论文
共 20 条
[1]  
[Anonymous], AM MATH SOC TRANSL 2
[2]  
[Anonymous], 1967, J PPL M ECH TECHPHYS
[3]   Spectral bifurcations in dispersive wave turbulence [J].
Cai, D ;
Majda, AJ ;
McLaughlin, DW ;
Tabak, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (25) :14216-14221
[4]   Dispersive wave turbulence in one dimension [J].
Cai, D ;
Majda, AJ ;
McLaughlin, DW ;
Tabak, EG .
PHYSICA D, 2001, 152 :551-572
[5]   Chaotic and turbulent behavior of unstable one-dimensional nonlinear dispersive waves [J].
Cai, D ;
McLaughlin, DW .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :4125-4153
[6]   OPTICAL TURBULENCE - WEAK TURBULENCE, CONDENSATES AND COLLAPSING FILAMENTS IN THE NONLINEAR SCHRODINGER-EQUATION [J].
DYACHENKO, S ;
NEWELL, AC ;
PUSHKAREV, A ;
ZAKHAROV, VE .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 57 (1-2) :96-160
[7]   BOTTLENECK PHENOMENON IN DEVELOPED TURBULENCE [J].
FALKOVICH, G .
PHYSICS OF FLUIDS, 1994, 6 (04) :1411-1414
[8]   ON THE NON-LINEAR ENERGY TRANSFER IN A GRAVITY-WAVE SPECTRUM .1. GENERAL THEORY [J].
HASSELMANN, K .
JOURNAL OF FLUID MECHANICS, 1962, 12 (04) :481-500
[10]   SOLITON STABILITY IN PLASMAS AND HYDRODYNAMICS [J].
KUZNETSOV, EA ;
RUBENCHIK, AM ;
ZAKHAROV, VE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 142 (03) :103-165