Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest

被引:268
作者
Gousias, Ioannis S. [1 ,2 ,3 ,4 ]
Rueckert, Daniel [3 ]
Heckemann, Rolf A. [4 ]
Dyet, Leigh E. [1 ,2 ]
Boardman, James P. [1 ,2 ]
Edwards, A. David [1 ,2 ]
Hammers, Alexander [4 ,5 ,6 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC Clin Sci Ctr, Imaging Sci Dept, London W12 0NN, England
[2] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, Dept Pediat, London W12 0NN, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2BZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, Div Neurosci, London W12 0NN, England
[5] UCL, Inst Neurol, Dept Clin & Expt Epilepsy, Gerrards Cross, England
[6] Natl Soc Epilepsy MRI Unit, Gerrards Cross, England
基金
英国医学研究理事会;
关键词
anatomy; cross-sectional; brain mapping; image processing; pediatric brain atlases; computer-assisted; neuroanatomy; methods;
D O I
10.1016/j.neuroimage.2007.11.034
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Three-dimensional atlases and databases of the brain at different ages facilitate the description of neuroanatomy and the monitoring of cerebral growth and development. Brain segmentation is challenging in young children due to structural differences compared to adults. We have developed a method, based on established algorithms, for automatic segmentation of young children's brains into 83 regions of interest (ROIs), and applied this to an exemplar group of 33 2-year-old subjects who had been born prematurely. The algorithm uses prior information from 30 normal adult brain magnetic resonance (MR) images, which had been manually segmented to create 30 atlases, each labeling 83 anatomical structures. Each of these adult atlases was registered to each 2-year-old target MR image using non-rigid registration based on free-form deformations. Label propagation from each adult atlas yielded a segmentation of each 2-year-old brain into 83 ROIs. The final segmentation was obtained by combination of the 30 propagated adult atlases using decision fusion, improving accuracy over individual propagations. We validated this algorithm by comparing the automatic approach with three representative manually segmented volumetric regions (the subcortical caudate nucleus, the neocortical precentral gyros and the archicortical hippocampus) using similarity indices (SI), a measure of spatial overlap (intersection over average). SI results for automatic versus manual segmentations for these three structures were 0.90 +/- 0.01, 0.90 +/- 0.01 and 0.88 +/- 0.03 respectively. This registration approach allows the rapid construction of automatically labelled age-specific brain atlases for children at the age of 2 years. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:672 / 684
页数:13
相关论文
共 64 条
[31]   On combining classifiers [J].
Kittler, J ;
Hatef, M ;
Duin, RPW ;
Matas, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :226-239
[32]   Age-related volumetric changes of brain gray and white matter in healthy infants and children [J].
Matsuzawa, J ;
Matsui, M ;
Konishi, T ;
Noguchi, K ;
Gur, RC ;
Bilker, W ;
Miyawaki, T .
CEREBRAL CORTEX, 2001, 11 (04) :335-342
[33]   A four-dimensional probabilistic atlas of the human brain [J].
Mazziotta, J ;
Toga, A ;
Evans, A ;
Fox, P ;
Lancaster, J ;
Zilles, K ;
Woods, R ;
Paus, T ;
Simpson, G ;
Pike, B ;
Holmes, C ;
Collins, L ;
Thompson, P ;
MacDonald, D ;
Iacoboni, M ;
Schormann, T ;
Amunts, K ;
Palomero-Gallagher, N ;
Geyer, S ;
Parsons, L ;
Narr, K ;
Kabani, N ;
Le Goualher, G ;
Feidler, J ;
Smith, K ;
Boomsma, D ;
Pol, HH ;
Cannon, T ;
Kawashima, R ;
Mazoyer, B .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, 8 (05) :401-430
[34]   A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) [J].
Mazziotta, J ;
Toga, A ;
Evans, A ;
Fox, P ;
Lancaster, J ;
Zilles, K ;
Woods, R ;
Paus, T ;
Simpson, G ;
Pike, B ;
Holmes, C ;
Collins, L ;
Thompson, P ;
MacDonald, D ;
Iacoboni, M ;
Schormann, T ;
Amunts, K ;
Palomero-Gallagher, N ;
Geyer, S ;
Parsons, L ;
Narr, K ;
Kabani, N ;
Le Goualher, G ;
Boomsma, D ;
Cannon, T ;
Kawashima, R ;
Mazoyer, B .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 356 (1412) :1293-1322
[35]   MATHEMATICAL TEXTBOOK OF DEFORMABLE NEUROANATOMIES [J].
MILLER, MI ;
CHRISTENSEN, GE ;
AMIT, Y ;
GRENANDER, U .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11944-11948
[36]  
Mitchell TN, 2003, AM J NEURORADIOL, V24, P410
[37]   Detailed semiautomated MRI based morphometry of the neonatal brain: Preliminary results [J].
Nishida, Mitsuhiro ;
Makris, Nikolaos ;
Kennedy, David N. ;
Vangel, Mark ;
Fischl, Bruce ;
Krishnamoorthy, Kalpathy S. ;
Caviness, Verne S. ;
Grant, P. Ellen .
NEUROIMAGE, 2006, 32 (03) :1041-1049
[38]   Adolescents who were born very preterm have decreased brain volumes [J].
Nosarti, C ;
Al-Asady, MHS ;
Frangou, S ;
Stewart, AL ;
Rifkin, L ;
Murray, RM .
BRAIN, 2002, 125 :1616-1623
[39]   Regional brain volume abnormalities and long-term cognitive outcome in preterm infants [J].
Peterson, BS ;
Vohr, B ;
Staib, LH ;
Cannistraci, CJ ;
Dolberg, A ;
Schneider, KC ;
Katz, KH ;
Westerveld, M ;
Sparrow, S ;
Anderson, AW ;
Duncan, CC ;
Makuch, RW ;
Gore, JC ;
Ment, LR .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2000, 284 (15) :1939-1947
[40]   Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants [J].
Peterson, BS ;
Anderson, AW ;
Ehrenkranz, R ;
Staib, LH ;
Tageldin, M ;
Colson, E ;
Gore, JC ;
Duncan, CC ;
Makuch, R ;
Ment, LR .
PEDIATRICS, 2003, 111 (05) :939-948