Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters

被引:65
作者
Mahmoud, Emad E. [1 ]
机构
[1] Sohag Univ, Fac Sci, Dept Math, Sohag 82524, Egypt
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2012年 / 349卷 / 03期
关键词
CHEN; ATTRACTORS;
D O I
10.1016/j.jfranklin.2012.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present the adaptive anti-lag synchronization (ALS) of two identical or nonidentical hyperchaotic complex nonlinear systems with uncertain parameters. The concept of ALS is not detected yet in the literature. Based on the Lyapunov function a scheme is designed to achieve ALS of hyperchaotic attractors of these systems. The ALS of two identical complex Lu systems and two different hyperchaotic complex Lorenz and Lu systems are taken as two examples to verify the feasibility of the presented scheme. These hyperchaotic complex systems appear in several applications in physics, engineering and other applied sciences. Numerical simulations are calculated to demonstrate the effectiveness of the proposed synchronization scheme and verify the theoretical results. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1247 / 1266
页数:20
相关论文
共 42 条
[1]   New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring [J].
Cafagna, D ;
Grassi, G .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2889-2903
[2]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[3]  
Chen G., 1998, CHAOS ORDER METHODOL
[4]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[5]   Propagation of projective synchronization in a series connection of chaotic systems [J].
Grassi, Giuseppe .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (02) :438-451
[6]   Absolute stability of uncertain discrete Lur'e systems and maximum admissible perturbed bounds [J].
Hao, Fei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (08) :1511-1525
[7]   Lr-synchronization and adaptive synchronization of a class of chaotic Lurie systems under perturbations [J].
He, Hanlin ;
Tu, Jianjun ;
Xiong, Ping .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09) :2257-2269
[8]  
Kiselev A. D., 1998, Journal of Physical Studies, V2, P30
[9]   Secure communication based on chaotic synchronization via interval time-varying delay feedback control [J].
Kwon, O. M. ;
Park, Ju H. ;
Lee, S. M. .
NONLINEAR DYNAMICS, 2011, 63 (1-2) :239-252
[10]   Delay-dependent criteria for absolute stability of uncertain time-delayed Lur'e dynamical systems [J].
Lee, S. M. ;
Park, Ju H. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (01) :146-153