Assessing Statistical Results: Magnitude, Precision, and Model Uncertainty

被引:36
作者
Anderson, Andrew A. [1 ]
机构
[1] US Dept Treasury, Off Comptroller Currency, 400 7th St SW, Washington, DC 20226 USA
关键词
Inference; Robustness; Sampling error;
D O I
10.1080/00031305.2018.1537889
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Evaluating the importance and the strength of empirical evidence requires asking three questions: First, what are the practical implications of the findings? Second, how precise are the estimates? Confidence intervals provide an intuitive way to communicate precision. Although nontechnical audiences often misinterpret confidence intervals (Cls), I argue that the result is less dangerous than the misunderstandings that arise from hypothesis tests. Third, is the model correctly specified? The validity of point estimates and Cls depends on the soundness of the underlying model.
引用
收藏
页码:118 / 121
页数:4
相关论文
共 5 条
[1]  
[Anonymous], J SOCIOECONOMICS, DOI DOI 10.1016/j.socec.2004.09.024
[2]   Bayesian model averaging: A tutorial [J].
Hoeting, JA ;
Madigan, D ;
Raftery, AE ;
Volinsky, CT .
STATISTICAL SCIENCE, 1999, 14 (04) :382-401
[3]  
MCCLOSKEY DN, 1983, J ECON LIT, V21, P481
[4]  
McCloskey DN, 1996, J ECON LIT, V34, P97
[5]  
Wasserstein RL, 2016, AM STAT, V70, P129