Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified

被引:69
作者
Zhang, F. J. [1 ]
Zhao, D. W. [2 ]
Zhuo, Z. L. [1 ]
Wang, H. [3 ]
Xu, Z. [1 ]
Wang, Y. S. [1 ]
机构
[1] Beijing Jiaotong Univ, Minist Educ, Key Lab Luminescence & Opt Informat, Beijing 100044, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Tech Inst Phys & Chem CAS, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
基金
国家杰出青年科学基金; 中国国家自然科学基金;
关键词
Inverted organic solar cell; Interlayer; MoO3; Illumination intensity; LIGHT-EMITTING-DIODES; OPEN-CIRCUIT VOLTAGE; INTERFACIAL MODIFICATION; EFFICIENCY; DEVICES; LAYER; OXIDE; FILM; SEMICONDUCTORS; PERFORMANCE;
D O I
10.1016/j.solmat.2010.08.031
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Inverted small molecule organic solar cells were fabricated with a Ca modified indium tin oxide (ITO) substrates as the cathode and molybdenum trioxide (MoO3) interlayer modified Ag as anode. The Ca and MoO3 layers were found to be critical to the device performance. The insertion of Ca forms Ohmic contact between ITO and fullerene (C-60), significantly enhancing the fill factor and further improvement of efficiency by 65% compared to the device without Ca layer. MoO3 interlayer has multiple functions as anode buffer layer, effectively preventing the exciton quenching and reducing the interfacial resistance. Optimal copper phthalocyanine (CuPc) thickness of 25 nm demonstrates that the balance between light harvesting and charge transport is obtained and a maximum PCE of 0.64% under 100 mW/cm(2) is achieved. Finally, the dependencies of the short-circuit current density and the open-circuit voltage on illumination intensity were investigated. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2416 / 2421
页数:6
相关论文
共 53 条
[1]   Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores [J].
Baek, Woon-Hyuk ;
Seo, Il ;
Yoon, Tae-Sik ;
Lee, Hyun Ho ;
Yun, Chong Man ;
Kim, Yong-Sang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (09) :1587-1591
[2]   Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT:PSS using UV-ozone exposure [J].
Benor, Amare ;
Takizawa, Shin-ya ;
Perez-Bolivar, Cesar ;
Anzenbacher, Pavel, Jr. .
ORGANIC ELECTRONICS, 2010, 11 (05) :938-945
[3]   Electron and hole transport in poly(p-phenylene vinylene) devices [J].
Blom, PWM ;
deJong, MJM ;
Vleggaar, JJM .
APPLIED PHYSICS LETTERS, 1996, 68 (23) :3308-3310
[4]  
Brabec CJ., 2003, Organic photovoltaics, concepts and realization
[5]   Polymer solar cells: Recent development and possible routes for improvement in the performance [J].
Cai, Wanzhu ;
Gong, Xiong ;
Cao, Yong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) :114-127
[6]   Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer [J].
Chan, M. Y. ;
Lee, C. S. ;
Lai, S. L. ;
Fung, M. K. ;
Wong, F. L. ;
Sun, H. Y. ;
Lau, K. M. ;
Lee, S. T. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (09)
[7]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[8]   Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative [J].
Gadisa, A ;
Svensson, M ;
Andersson, MR ;
Inganäs, O .
APPLIED PHYSICS LETTERS, 2004, 84 (09) :1609-1611
[9]   Interfacial modification to improve inverted polymer solar cells [J].
Hau, Steven K. ;
Yip, Hin-Lap ;
Acton, Orb ;
Baek, Nam Seob ;
Ma, Hong ;
Jen, Alex K. -Y. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (42) :5113-5119
[10]   Advanced materials and processes for polymer solar cell devices [J].
Helgesen, Martin ;
Sondergaard, Roar ;
Krebs, Frederik C. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (01) :36-60