Random double porosity model

被引:22
作者
Bourgeat, A
Mikelic, A
Piatnitski, A
机构
[1] Universite Jean Monnet, UMR 5585, F-42023 St Etienne 02, France
[2] Univ Lyon 1, Anal Numer Lab, UMR 5585, F-69622 Villeurbanne, France
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117924, Russia
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 01期
关键词
D O I
10.1016/S0764-4442(98)80110-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a weakly compressible single phase fluid flow through a randomly fissured porous medium. Under standard assumptions of the stochastic homogenization theory we obtain the stochastic version of the periodic case. The basic tool is the stochastic two-scale convergence. The source-like terms are given by the coupling with a newly introduced stochastic auxiliary problem. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 7 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[3]   Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow [J].
Bourgeat, A ;
Luckhaus, S ;
Mikelic, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) :1520-1543
[4]  
BOURGEAT A, 1994, J REINE ANGEW MATH, V456, P19
[5]  
FASANO A, 1998, IN PRESS ADV MATH SC
[6]  
Jikov V. V., 1994, Homogenization of differential operators and integral functionals, DOI 10.1007/978-3-642-84659-5