Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro

被引:19
作者
Chen, AC
Sah, RL
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Orthopaed, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Inst Biomed Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1002/jor.1100160504
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Transplantation of chondrocytes by injection or within carrier matrices has shown promise for augmenting the repair of articular cartilage defects. In vivo, transplanted chondrocytes are exposed to mechanical forces. This in vitro study examined the effect of a step application of compressive load to chondrocytes after the cells had been seeded onto a cartilage surface. Bovine chondrocytes were transplanted onto bovine cartilage disks, allowed to attach for 1 hour or 4 days, and subjected to compression through overlying cartilage disks in a confined compression configuration. Before use, the disks were lyophilized to lyse the endogenous chondrocytes and thereby allow assessment of the metabolic activity of the transplanted cells. During a 16-hour application of compressive stress of 0.24-0.72 MPa, proteoglycan synthesis, assessed as [S-35]sulfate incorporation into macromolecules, was inhibited by approximately 68% after the 1-hour attachment and by approximately 45% after the 4-day attachment. Cell retention after the application of load was assessed by use of [H-3]thymidine-tagged chondrocytes and quantitation of the displacement of radioactivity. After the 1-hour seeding period, loading induced a dose-dependent dislodgment of [H-3]radioactivity (as much as 35%) from the tissue bilayer. In contrast, after the 1-day seeding period, there was no detectable effect of loading on chondrocyte dislodgment with an 8-12% release of radioactivity. The inhibitory effect of a 16-hour compression of 0.48 MPa applied after the 4-day seeding period was studied further. This protocol did not appear to have an irreversible effect on chondrocyte metabolism; at 2 days after the release of load, proteoglycan synthesis by the loaded cells was stimulated by 41% compared with transplanted cells that were not subjected to loading. These results suggest that the application of static compressive stress to chondrocytes at a cartilage surface may affect biosynthesis by these cells and thus subsequent integrative cartilage repair. Such an effect may have implications for optimization of the tightness of the press fit of a cell-laden cartilaginous construct into an articular defect.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 41 条
[1]   Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment [J].
Bachrach, NM ;
Valhmu, WB ;
Stazzone, E ;
Ratcliffe, A ;
Lai, WM ;
Mow, VC .
JOURNAL OF BIOMECHANICS, 1995, 28 (12) :1561-1569
[2]   TRANSPLANTATION OF TRANSDUCED CHONDROCYTES PROTECTS ARTICULAR-CARTILAGE FROM INTERLEUKIN 1-INDUCED EXTRACELLULAR-MATRIX DEGRADATION [J].
BARAGI, VM ;
RENKIEWICZ, RR ;
JORDAN, H ;
BONADIO, J ;
HARTMAN, JW ;
ROESSLER, BJ .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (05) :2454-2460
[3]   Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model [J].
Breinan, HA ;
Minas, T ;
Hsu, HP ;
Nehrer, S ;
Sledge, CB ;
Spector, M .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (10) :1439-1451
[4]   Articular cartilage .2. Degeneration and osteoarthrosis, repair, regeneration, and transplantation [J].
Buckwalter, JA ;
Mankin, HJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (04) :612-632
[5]   EFFECT OF COMPREHENSIVE LOADING AND UNLOADING ON THE SYNTHESIS OF TOTAL PROTEIN, PROTEOGLYCAN, AND FIBRONECTIN BY CANINE CARTILAGE EXPLANTS [J].
BURTONWURSTER, N ;
VERNIERSINGER, M ;
FARQUHAR, T ;
LUST, G .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1993, 11 (05) :717-729
[6]   Chondrocyte transplantation to articular cartilage explants in vitro [J].
Chen, AC ;
Nagrampa, JP ;
Schinagl, RM ;
Lottman, LM ;
Sah, RL .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1997, 15 (06) :791-802
[7]  
COUTTS RD, 1992, CLIN ORTHOP RELAT R, P263
[8]   INVITRO RESPONSE OF CHONDROCYTES TO MECHANICAL LOADING - THE EFFECT OF SHORT-TERM MECHANICAL TENSION [J].
DEWITT, MT ;
HANDLEY, CJ ;
OAKES, BW ;
LOWTHER, DA .
CONNECTIVE TISSUE RESEARCH, 1984, 12 (02) :97-109
[9]   THE REPAIR OF EXPERIMENTALLY PRODUCED DEFECTS IN RABBIT ARTICULAR-CARTILAGE BY AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
GRANDE, DA ;
PITMAN, MI ;
PETERSON, L ;
MENCHE, D ;
KLEIN, M .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1989, 7 (02) :208-218
[10]   MECHANICAL AND PHYSICOCHEMICAL DETERMINANTS OF THE CHONDROCYTE BIOSYNTHETIC RESPONSE [J].
GRAY, ML ;
PIZZANELLI, AM ;
GRODZINSKY, AJ ;
LEE, RC .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1988, 6 (06) :777-792