The use of asymptotic modelling in vibration and stability analysis of structures

被引:22
作者
Ilanko, S [1 ]
机构
[1] Univ Canterbury, Dept Mech Engn, Christchurch 1, New Zealand
关键词
D O I
10.1016/S0022-460X(03)00273-6
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The use of springs with very large stiffness to model constraints in vibratory systems has been a popular approach to overcome the limitations on the choice of admissible functions in the Rayleigh-Ritz method. The maximum possible error resulting from this asymptotic modelling can be determined by using positive and negative stiffness values, or in general terms using positive and negative penalty functions. This paper illustrates how this method could be used to determine the critical loads of structures. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1047 / 1054
页数:8
相关论文
共 20 条
[1]   Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part I: Empty and fluid-filled shells [J].
Amabili, M ;
Garziera, R .
JOURNAL OF FLUIDS AND STRUCTURES, 2000, 14 (05) :669-690
[2]   A technique for the systematic choice of admissible functions in the Rayleigh-Ritz method [J].
Amabili, M ;
Garziera, R .
JOURNAL OF SOUND AND VIBRATION, 1999, 224 (03) :519-539
[3]  
[Anonymous], LECT NOTES MATH
[4]  
[Anonymous], 1966, VARIATIONAL METHODS, DOI DOI 10.3138/9781487596002
[5]  
Aviles R, 1998, COMMUN NUMER METH EN, V14, P463, DOI 10.1002/(SICI)1099-0887(199805)14:5<463::AID-CNM165>3.0.CO
[6]  
2-W
[7]   FREE-VIBRATION ANALYSIS OF A CYLINDRICAL-SHELL CIRCULAR PLATE SYSTEM WITH GENERAL COUPLING AND VARIOUS BOUNDARY-CONDITIONS [J].
CHENG, L ;
NICOLAS, J .
JOURNAL OF SOUND AND VIBRATION, 1992, 155 (02) :231-247
[8]  
Courant R., 1943, B AM MATH SOC, DOI [DOI 10.1090/S0002-9904-1943-07818-4, 10.1090/s0002-9904-1943-07818-4]
[9]  
Gavete L, 2000, COMMUN NUMER METH EN, V16, P409, DOI 10.1002/1099-0887(200006)16:6<409::AID-CNM349>3.0.CO
[10]  
2-Z