Photocatalytic properties of redox-treated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution

被引:85
作者
Huang, Bing-Shun [1 ]
Chang, Feng-Yim [1 ]
Wey, Ming-Yen [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Environm Engn, Taichung 402, Taiwan
关键词
Pt; H-2; Photocatalysts; Oxidation; Reduction; PtO/TiO2; SOL-GEL PROCESS; HYDROGEN EVOLUTION; SURFACTANT TEMPLATE; TIO2; PHOTOCATALYSTS; ALIPHATIC-ALCOHOLS; NANOPARTICLES; DECOMPOSITION; GENERATION; CATALYST; ANATASE;
D O I
10.1016/j.ijhydene.2010.05.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of redox-treated Pt/TiO2 photocatalysts on H-2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV-vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower S-BET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H-2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H-2 production because of their homogenous distribution, lower phase transition, higher S-BET, and higher energy band gap. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7699 / 7705
页数:7
相关论文
共 35 条
[1]   An overview on semiconductor particulate systems for photoproduction of hydrogen [J].
Ashokkumar, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (06) :427-438
[2]   ESCA STUDY OF SPUTTERED PLATINUM FILMS [J].
BANCROFT, GM ;
ADAMS, I ;
COATSWORTH, LL ;
BENNEWITZ, CD ;
BROWN, JD ;
WESTWOOD, WD .
ANALYTICAL CHEMISTRY, 1975, 47 (03) :586-588
[3]   Photocatalytic decomposition of aliphatic alcohols, acids, and esters [J].
Blount, MC ;
Buchholz, JA ;
Falconer, JL .
JOURNAL OF CATALYSIS, 2001, 197 (02) :303-314
[4]   Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2 [J].
Choi, Hyung-Joo ;
Kang, Misook .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (16) :3841-3848
[5]   Size dependent study of MeOH decomposition over size-selected pt nanoparticles synthesized via micelle encapsulation [J].
Croy, Jason R. ;
Mostafa, Simon ;
Liu, Jing ;
Sohn, Yong-Ho ;
Roldan Cuenya, Beatriz .
CATALYSIS LETTERS, 2007, 118 (1-2) :1-7
[6]   Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst [J].
Dholam, R. ;
Patel, N. ;
Adami, M. ;
Miotello, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (13) :5337-5346
[7]   Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2 [J].
Fu, XZ ;
Clark, LA ;
Yang, Q ;
Anderson, MA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (02) :647-653
[8]   Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 [J].
Gribb, AA ;
Banfield, JF .
AMERICAN MINERALOGIST, 1997, 82 (7-8) :717-728
[9]   Biohydrogen production by anaerobic fermentation of food waste [J].
Han, SK ;
Shin, HS .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (06) :569-577
[10]   Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst [J].
Ikuma, Yasuro ;
Bessho, Hiroaki .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (14) :2689-2692