Mitochondrial dysfunction in neurodegenerative disorders

被引:56
作者
Baron, M.
Kudin, A. P.
Kunz, W. S.
机构
[1] Univ Bonn, Dept Epileptol, D-53105 Bonn, Germany
[2] Univ Bonn, Life & Brain Ctr, D-53105 Bonn, Germany
关键词
amyotrophic lateral sclerosis (ALS); Friedreich's ataxia; mitochondrion; Morbus Parkinson; neurodegenerative disorder;
D O I
10.1042/BST0351228
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is compelling evidence for the direct involvement of mitochondria in certain neurodegenerative disorders, such as Morbus Parkinson, FRDA (Friedireich's ataxia), ALS (amyotrophic lateral sclerosis), and temporal lobe epilepsy with Ammon's horn sclerosis. This evidence includes the direct genetic evidence of pathogenic mutations in mitochondrial proteins in inherited Parkinsonism {such as PARK6, with mutations in the mitochondrial PINK1 [PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced kinase 1]} and in FRDA (with mutations in the mitochondrial protein frataxin). Moreover, there is functional evidence of impairment of the respiratory chain in sporadic forms of Parkinsonism, ALS, and temporal lobe epilepsy with Ammon's horn sclerosis. in the sporadic forms of the above-mentioned neurodegenerative disorders, increased oxidative stress appears to be the crucial initiating event that affects respiratory chain function and starts a vicious cycle finally leading to neuronal cell death. We suggest that the critical factor that determines the survival of neurons in neurodegenerative disorders is the degree of mitochondrial DNA damage and the maintenance of an appropriate mitochondrial DNA copy number. Evidence for a depletion of intact copies of the mitochondrial genome has been provided in all above-mentioned neurodegenerative disorders including ALS and temporal lobe epilepsy with Ammon's horn sclerosis. in the present study, we critically review the available data.
引用
收藏
页码:1228 / 1231
页数:4
相关论文
共 53 条
[1]   High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease [J].
Bender, A ;
Krishnan, KJ ;
Morris, CM ;
Taylor, GA ;
Reeve, AK ;
Perry, RH ;
Jaros, E ;
Hersheson, JS ;
Betts, J ;
Klopstock, T ;
Taylor, RW ;
Turnbull, DM .
NATURE GENETICS, 2006, 38 (05) :515-517
[2]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[3]   RESPIRATORY-CHAIN ABNORMALITIES IN SKELETAL-MUSCLE FROM PATIENTS WITH PARKINSONS-DISEASE [J].
BINDOFF, LA ;
BIRCHMACHIN, MA ;
CARTLIDGE, NEF ;
PARKER, WD ;
TURNBULL, DM .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1991, 104 (02) :203-208
[4]  
Borthwick GM, 1999, ANN NEUROL, V46, P787, DOI 10.1002/1531-8249(199911)46:5<787::AID-ANA17>3.0.CO
[5]  
2-8
[6]   Molecular pathways to neurodegeneration [J].
Bossy-Wetzel, E ;
Schwarzenbacher, R ;
Lipton, SA .
NATURE MEDICINE, 2004, 10 (07) :S2-S9
[7]   SUPEROXIDE-DISMUTASE ACTIVITY, OXIDATIVE DAMAGE, AND MITOCHONDRIAL ENERGY-METABOLISM IN FAMILIAL AND SPORADIC AMYOTROPHIC-LATERAL-SCLEROSIS [J].
BOWLING, AC ;
SCHULZ, JB ;
BROWN, RH ;
BEAL, MF .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (06) :2322-2325
[8]   Unraveling the mechanisms involved in motor neuron degeneration in ALS [J].
Bruijn, LI ;
Miller, TM ;
Cleveland, DW .
ANNUAL REVIEW OF NEUROSCIENCE, 2004, 27 :723-749
[9]   Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity [J].
Bulteau, AL ;
O'Neill, HA ;
Kennedy, MC ;
Ikeda-Saito, M ;
Isaya, G ;
Szweda, LI .
SCIENCE, 2004, 305 (5681) :242-245
[10]   A PRIMATE MODEL OF PARKINSONISM - SELECTIVE DESTRUCTION OF DOPAMINERGIC-NEURONS IN THE PARS COMPACTA OF THE SUBSTANTIA NIGRA BY N-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE [J].
BURNS, RS ;
CHIUEH, CC ;
MARKEY, SP ;
EBERT, MH ;
JACOBOWITZ, DM ;
KOPIN, IJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (14) :4546-4550