Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis

被引:98
作者
Puri, MC
Bernstein, A
机构
[1] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Program Mol Biol & Canc, Toronto, ON M5G 1X5, Canada
[2] Canadian Inst Hlth Res, Ottawa, ON K1A 0W9, Canada
关键词
D O I
10.1073/pnas.2133552100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In mammals, the continuous production of hematopoietic cells (HCs) is sustained by a small number of hematopoietic stem cells (HSCs) residing in the bone marrow. Early HSC activity arises in the aorta-gonad mesonephros region, within cells localized to the ventral floor of the major blood vessels, suggesting that the first HSCs may be derived from cells capable of giving rise to the hematopoietic system and to the endothelial cells of the vasculature. TIE1 (TIE) and TIE2 (TEK) are related receptor tyrosine kinases with an embryonic expression pattern in endothelial cells, their precursors, and HCs, suggestive of a role in the divergence and function of both lineages. indeed, gene targeting approaches have shown that TIE1, TIE2, and ligands for TIE2, the angiopoietins, are essential for vascular development and maintenance. To explore possible roles for these receptors in HCs, we have examined the ability of embryonic cells lacking both TIE1 and TIE2 to contribute to developmental and adult hematopoiesis by generating chimeric animals between normal embryonic cells and cells lacking these receptors. We show here that TIE receptors are not required for differentiation and proliferation of definitive hematopoietic lineages in the embryo and fetus; surprisingly, however, these receptors are specifically required during postnatal bone marrow hematopoiesis.
引用
收藏
页码:12753 / 12758
页数:6
相关论文
共 34 条
[1]   Differential requirements for alpha 4 integrins during fetal and adult hematopoiesis [J].
Arroyo, AG ;
Yang, JT ;
Rayburn, H ;
Hynes, RO .
CELL, 1996, 85 (07) :997-1008
[2]   The tie receptor tyrosine kinase is expressed by human hematopoietic progenitor cells and by a subset of megakaryocytic cells [J].
Batard, P ;
Sansilvestri, P ;
Scheinecker, C ;
Knapp, W ;
Debili, N ;
Vainchenker, W ;
Buhring, HJ ;
Monier, MN ;
Kukk, E ;
Partanen, J ;
Matikainen, MT ;
Alitalo, R ;
Hatzfeld, J ;
Alitalo, K .
BLOOD, 1996, 87 (06) :2212-2220
[3]   RAG-2-DEFICIENT BLASTOCYST COMPLEMENTATION - AN ASSAY OF GENE-FUNCTION IN LYMPHOCYTE DEVELOPMENT [J].
CHEN, JZ ;
LANSFORD, R ;
STEWART, V ;
YOUNG, F ;
ALT, FW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (10) :4528-4532
[4]   Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta [J].
de Bruijn, MFTR ;
Ma, XQ ;
Robin, C ;
Ottersbach, K ;
Sanchez, MJ ;
Dzierzak, E .
IMMUNITY, 2002, 16 (05) :673-683
[5]   Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells [J].
De Palma, M ;
Venneri, MA ;
Roca, C ;
Naldini, L .
NATURE MEDICINE, 2003, 9 (06) :789-795
[6]   Circulation of hematopoietic progenitors in the mouse embryo [J].
Delassus, S ;
Cumano, A .
IMMUNITY, 1996, 4 (01) :97-106
[7]   DOMINANT-NEGATIVE AND TARGETED NULL MUTATIONS IN THE ENDOTHELIAL RECEPTOR TYROSINE KINASE, TEK, REVEAL A CRITICAL ROLE IN VASCULOGENESIS OF THE EMBRYO [J].
DUMONT, DJ ;
GRADWOHL, G ;
FONG, GH ;
PURI, MC ;
GERTSENSTEIN, M ;
AUERBACH, A ;
BREITMAN, ML .
GENES & DEVELOPMENT, 1994, 8 (16) :1897-1909
[8]   Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1 [J].
Gale, NW ;
Thurston, G ;
Hackett, SF ;
Renard, R ;
Wang, Q ;
McClain, J ;
Martin, C ;
Witte, C ;
Witte, MH ;
Jackson, D ;
Suri, C ;
Campochiaro, PA ;
Wiegand, SJ ;
Yancopoulos, GD .
DEVELOPMENTAL CELL, 2002, 3 (03) :411-423
[9]   The hare and the tortoise: An embryonic haematopoietic race [J].
Godin, I ;
Cumano, A .
NATURE REVIEWS IMMUNOLOGY, 2002, 2 (08) :593-604
[10]   Generating green fluorescent mice by germline transmission of green fluorescent ES cells [J].
Hadjantonakis, AK ;
Gertsenstein, M ;
Ikawa, M ;
Okabe, M ;
Nagy, A .
MECHANISMS OF DEVELOPMENT, 1998, 76 (1-2) :79-90