Electrochemical oxidation of several chlorophenols on diamond electrodes -: Part I.: Reaction mechanism

被引:138
作者
Cañizares, P [1 ]
García-Gómez, J [1 ]
Sáez, C [1 ]
Rodrigo, MA [1 ]
机构
[1] Univ Castilla La Mancha, Fac Ciencias Quim, Dept Ingn Quim, E-13071 Ciudad Real, Spain
关键词
boron-doped diamond; chlorophenols; electrochemical oxidation; wastes;
D O I
10.1023/A:1025888126686
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical oxidation of 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol aqueous wastes using boron-doped diamond electrodes was studied. This treatment led to complete mineralization of the wastes regardless of the operating conditions. A simple mechanistic model is consistent with the voltammetric and electrolysis results. According to this model, the electrochemical treatment of chlorophenol aqueous wastes involves the anodic and cathodic release of chlorine followed by the formation of non-chlorinated aromatic intermediates. Subsequent cleavage of the aromatic ring gives rise to non-chlorinated carboxylic acids. Chlorine atoms arising from the hydrodehalogenation of the chlorophenols are converted into more oxidized molecules at the anode. These molecules react with unsaturated C-4 carboxylic acid to finally yield trichloroacetic acid through a haloform reaction. The non-chlorinated organic acids are ultimately oxidized to carbon dioxide and the trichloroacetic acid into carbon dioxide and volatile organo-chlorinated molecules. Both direct and mediated electrochemical oxidation processes are involved in the electrochemical treatment of chlorophenols.
引用
收藏
页码:917 / 927
页数:11
相关论文
共 29 条
[1]   Effects of ozonation on the biodegradability of substituted phenols [J].
Adams, CD ;
Cozzens, RA ;
Kim, BJ .
WATER RESEARCH, 1997, 31 (10) :2655-2663
[2]   Anodic destruction of 4-chlorophenol solution [J].
Azzam, MO ;
Al-Tarazi, M ;
Tahboub, Y .
JOURNAL OF HAZARDOUS MATERIALS, 2000, 75 (01) :99-113
[3]   Mechanism and kinetics of oxidation of 2,4,6-trichlorophenol by Fenton's reagent [J].
Basu, S ;
Wei, IW .
ENVIRONMENTAL ENGINEERING SCIENCE, 2000, 17 (05) :279-290
[4]   Electrochemical oxidation of aqueous phenol wastes on synthetic diamond thin-film electrodes [J].
Cañizares, P ;
Díaz, M ;
Domínguez, JA ;
García-Gómez, J ;
Rodrigo, MA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (17) :4187-4194
[5]   Electrochemical oxidation of aqueous carboxylic acid wastes using diamond thin-film electrodes [J].
Cañizares, P ;
García-Gómez, J ;
Lobato, J ;
Rodrigo, MA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (05) :956-962
[6]   ANODIC-OXIDATION OF PHENOL FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C ;
PULGARIN, C .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (08) :703-708
[7]  
COMNINELLIS C, 1992, PROCESS SAF ENVIRON, V70, P219
[8]   ELECTROCATALYSIS IN THE ELECTROCHEMICAL CONVERSION/COMBUSTION OF ORGANIC POLLUTANTS FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1857-1862
[9]  
DELUCAS A, 2002, WASTE MANAGEMENT 200, P771
[10]   Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes [J].
Fóti, G ;
Gandini, D ;
Comninellis, C ;
Perret, A ;
Haenni, W .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (05) :228-230