Effect of Li2CO3-coating on the performance of natural graphite in Li-ion battery

被引:61
作者
Zhang, SS [1 ]
Xu, K [1 ]
Jow, TR [1 ]
机构
[1] USA, Res Lab, Adelphi, MD 20783 USA
关键词
graphite; Li2CO3; surface modification; storage performance; Li-ion battery;
D O I
10.1016/j.elecom.2003.09.014
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of Li2CO3-coating on the performance of natural graphite in a Li-ion battery was studied. It is shown that Li2CO3-coating can effectively increase reversibility of the initial forming cycle of Li/graphite half-cell. More interestingly, the Li2CO3-coating significantly suppresses self-delithiation of the lithiated graphite, which enhances storage performance of the Li-ion battery. The Li2CO3-coated graphite also shows higher capacity retention after long-term cycling. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:979 / 982
页数:4
相关论文
共 22 条
[1]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[2]   Surface-modified graphite as an improved intercalating anode for lithium-ion batteries [J].
Cao, YL ;
Xiao, LF ;
Ai, XP ;
Yang, HX .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (02) :A30-A33
[3]   Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries [J].
Choi, YK ;
Chung, KI ;
Kim, WS ;
Sung, YE ;
Park, SM .
JOURNAL OF POWER SOURCES, 2002, 104 (01) :132-139
[4]   Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation [J].
Chung, GC ;
Kim, HJ ;
Yu, SI ;
Jun, SH ;
Choi, JW ;
Kim, MH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4391-4398
[5]   A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells [J].
Ein-Eli, Y .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (05) :212-214
[6]   Chemical oxidation: A route to enhanced capacity in Li-ion graphite anodes [J].
EinEli, Y ;
Koch, VR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2968-2973
[7]   Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure [J].
Gnanaraj, JS ;
Levi, MD ;
Levi, E ;
Salitra, G ;
Aurbach, D ;
Fischer, JE ;
Claye, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (06) :A525-A536
[8]   Poly (acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries [J].
Guo, KK ;
Pan, QM ;
Fang, SB .
JOURNAL OF POWER SOURCES, 2002, 111 (02) :350-356
[9]   Enhancement of rate capability in graphite anode by surface modification with zirconia [J].
Kottegoda, IRM ;
Kadoma, Y ;
Ikuta, H ;
Uchimoto, Y ;
Wakihara, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (12) :A275-A278
[10]   Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries [J].
Lee, HY ;
Baek, JK ;
Jang, SW ;
Lee, SM ;
Hong, ST ;
Lee, KY ;
Kim, MH .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :206-212