Some useful filtering techniques for illposed problems

被引:15
作者
Daripa, P
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Texas A&M Univ, Supercomp Ctr, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
ill-posed Boussinesq equation; solitary wave; filtering method;
D O I
10.1016/S0377-0427(98)00186-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some useful filtering techniques for computing approximate solutions of illposed problems are presented. Special attention is given to the role of smoothness of the filters and the choice of time-dependent parameters used in these filtering techniques. Smooth filters and proper choice of time-dependent parameters in these filtering techniques allow numerical construction of more accurate approximate solutions of illposed problems. In order to illustrate this and the filtering techniques, a severely illposed fourth-order nonlinear wave equation is numercally solved using a three time-level finite difference scheme. Numerical examples are given showing the merits of the filtering techniques. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 7 条
[1]   A NUMERICAL STUDY OF RIEMANN PROBLEM SOLUTIONS AND STABILITY FOR A SYSTEM OF VISCOUS CONSERVATION-LAWS OF MIXED TYPE [J].
AFFOUF, M ;
CAFLISCH, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (03) :605-634
[2]  
DARIPA P, UNPUB NUMERICAL METH
[3]   INVERSE SCATTERING AND THE BOUSSINESQ EQUATION [J].
DEIFT, P ;
TOMEI, C ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :567-628
[4]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[5]  
TIKHONOV AN, 1977, SOLUTOINS ILL POSED
[6]  
WHITHAM GB, 1974, LINEAR NONLINEAR WAV
[7]  
Zhakarov V.E., 1974, SOV PHYS JETP, V38, P108