Reducing error and measurement time in impedance spectroscopy using model based optimal experimental design

被引:50
作者
Ciucci, Francesco [1 ]
Carraro, Thomas [2 ]
Chueh, William C. [3 ]
Lai, Wei [4 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Heidelberg Grad Sch Math & Computat Methods Sci, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[3] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94551 USA
[4] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
关键词
Mixed ionic and electronic conductor; Equivalent circuits; Identification of physical parameters; Frequency response analysis; NUMERICAL-METHODS; MIXED CONDUCTORS; VALIDATION; IDENTIFICATION; ALGORITHM; TRANSPORT;
D O I
10.1016/j.electacta.2011.02.098
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work we introduce several novel tools for the reduction of errors in parameters estimated with electrochemical impedance spectroscopy experiments. An optimization strategy is developed that minimizes an estimate of the errors on the parameters while bounding the experimental time. The approach is also used to reduce experimental time while keeping a bound on the parameter errors. This feature is particularly critical in systems changing significantly within the experimental time. The paper uses a fuel cell electrode model to test this methodology and presents a real time algorithm for coupling experiment with the parameter estimation and experimental optimization. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5416 / 5434
页数:19
相关论文
共 75 条
[1]   SEQUENTIAL EXPERIMENTAL-DESIGN FOR PRECISE PARAMETER-ESTIMATION .1. USE OF REPARAMETERIZATION [J].
AGARWAL, AK ;
BRISK, ML .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1985, 24 (01) :203-207
[2]  
Amemiya T., NONLINEAR REGRESSION, V1, P333
[3]  
[Anonymous], 2012, MODEL ORIENTED DESIG, DOI DOI 10.1007/978-1-4612-0703-0
[4]  
[Anonymous], 1984, CHEM ENG SCI
[5]  
[Anonymous], 2009, MATLAB VERS 7 1
[6]  
[Anonymous], 2006, Principles of statistical inference, DOI 10.1017/CBO9780511813559
[7]  
Atkinson A., 1992, OXFORD STAT SCI SERI
[8]  
ATKINSON AC, 1974, J ROY STAT SOC B MET, V36, P321
[9]   Computational procedures for optimal experimental design in biological systems [J].
Balsa-Canto, E. ;
Alonso, A. A. ;
Banga, J. R. .
IET SYSTEMS BIOLOGY, 2008, 2 (04) :163-172
[10]   Model-based measurement of diffusion using Raman spectroscopy [J].
Bardow, A ;
Marquardt, W ;
Göke, V ;
Koss, HJ ;
Lucas, K .
AICHE JOURNAL, 2003, 49 (02) :323-334