Reconstructing phylogenies and phenotypes: a molecular view of human evolution

被引:54
作者
Bradley, Brenda J. [1 ,2 ]
机构
[1] Univ Cambridge, Christs Coll, Cambridge CB2 3BU, England
[2] Univ Cambridge, Dept Zool, Cambridge CB2 3BU, England
基金
英国自然环境研究理事会;
关键词
DNA; gene expression; last common ancestor; molecular anthropology; molecular systematics;
D O I
10.1111/j.1469-7580.2007.00840.x
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution. Ultimately, however, these molecular findings can only be understood in light of data from field sites, morphology labs, and museum collections. Indeed, molecular anthropology depends on these sources for calibrating molecular clocks and placing genetic data within the context of key morphological and ecological transitions in human evolution.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 203 条
[1]   Palaeoanthropology - Our newest oldest ancestor? [J].
Aiello, LC ;
Collard, M .
NATURE, 2001, 410 (6828) :526-527
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   THE RELATIONSHIPS OF SIVAPITHECUS AND RAMAPITHECUS AND THE EVOLUTION OF THE ORANGUTAN [J].
ANDREWS, P ;
CRONIN, JE .
NATURE, 1982, 297 (5867) :541-546
[4]  
[Anonymous], EVOLUTION MAN
[5]   Molecular timing of primate divergences as estimated by two nonprimate calibration points [J].
Arnason, U ;
Gullberg, A ;
Janke, A .
JOURNAL OF MOLECULAR EVOLUTION, 1998, 47 (06) :718-727
[6]   Mammalian mitogenomic relationships and the root of the eutherian tree [J].
Arnason, U ;
Adegoke, JA ;
Bodin, K ;
Born, EW ;
Esa, YB ;
Gullberg, A ;
Nilsson, M ;
Short, RV ;
Xu, XF ;
Janke, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :8151-8156
[7]   Molecular estimates of primate divergences and new hypotheses for primate dispersal and the origin of modern humans [J].
Arnason, U ;
Gullberg, A ;
Burguete, AS ;
Janke, A .
HEREDITAS, 2000, 133 (03) :217-228
[8]   Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs [J].
Arnason, U ;
Gullberg, A ;
Janke, A ;
Xu, XF .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 43 (06) :650-661
[9]   A web-database of mammalian morphology and a reanalysis of placental phylogeny [J].
Asher, Robert J. .
BMC EVOLUTIONARY BIOLOGY, 2007, 7 (1)
[10]   More genes underwent positive selection in chimpanzee evolution than in human evolution [J].
Bakewell, Margaret A. ;
Shi, Peng ;
Zhang, Jianzhi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (18) :7489-7494