Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway

被引:91
作者
Jost, M
Huggett, TM
Kari, C
Rodeck, U [1 ]
机构
[1] Thomas Jefferson Univ, Dept Dermatol & Cutaneous Biol, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Kimmel Canc Ctr, Philadelphia, PA 19107 USA
关键词
D O I
10.1091/mbc.12.5.1519
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Normal epithelial cells undergo apoptosis when they are denied contact with the extracellular matrix, in a process termed "anoikis." Conversely, malignant epithelial cells typically acquire anchorage independence, i.e., the capacity to survive and grow in the absence of matrix interaction. Here we asked the question whether anoikis is affected by signaling through the EGF receptor (EGFR). We focused on the EGFR because EGFR signaling is frequently deregulated in malignant epithelial cells. We demonstrate that EGFR activation markedly alleviated the requirement of matrix engagement for survival of primary and immortalized human keratinocytes in suspension culture. Protection of epithelial cells through EGFR activation against anoikis was associated with and required sustained MAPK phosphorylation during the early phase of suspension culture. Interestingly, high levels of MAPK phosphorylation were not only required for EGFR-mediated protection against anoikis but also occurred as a consequence of caspase activation at later stages of suspension culture. These results demonstrate that EGFR activation contributes to anchorage-independent epithelial cell survival and identify MAPK activation as an important mechanism in this process.
引用
收藏
页码:1519 / 1527
页数:9
相关论文
共 48 条
[1]   Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J].
Bonni, A ;
Brunet, A ;
West, AE ;
Datta, SR ;
Takasu, MA ;
Greenberg, ME .
SCIENCE, 1999, 286 (5443) :1358-1362
[2]   Regulation of p21cip1 expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase [J].
Bottazzi, ME ;
Zhu, XY ;
Böhmer, RM ;
Assoian, RK .
JOURNAL OF CELL BIOLOGY, 1999, 146 (06) :1255-1264
[3]   NORMAL KERATINIZATION IN A SPONTANEOUSLY IMMORTALIZED ANEUPLOID HUMAN KERATINOCYTE CELL-LINE [J].
BOUKAMP, P ;
PETRUSSEVSKA, RT ;
BREITKREUTZ, D ;
HORNUNG, J ;
MARKHAM, A ;
FUSENIG, NE .
JOURNAL OF CELL BIOLOGY, 1988, 106 (03) :761-771
[4]   PRODUCTION AND AUTOINDUCTION OF TRANSFORMING GROWTH FACTOR-ALPHA IN HUMAN KERATINOCYTES [J].
COFFEY, RJ ;
DERYNCK, R ;
WILCOX, JN ;
BRINGMAN, TS ;
GOUSTIN, AS ;
MOSES, HL ;
PITTELKOW, MR .
NATURE, 1987, 328 (6133) :817-820
[5]  
COOK PW, 1992, CANCER RES, V52, P3224
[6]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241
[7]  
delPeso L, 1997, SCIENCE, V278, P687
[8]   Radiation-induced release of transforming growth factor α activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death [J].
Dent, P ;
Reardon, DB ;
Park, JS ;
Bowers, G ;
Logsdon, C ;
Valerie, K ;
Schmidt-Ullrich, R .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (08) :2493-2506
[9]  
DERYNCK R, 1987, CANCER RES, V47, P707
[10]   OVEREXPRESSION OF THE HUMAN EGF RECEPTOR CONFERS AN EGF-DEPENDENT TRANSFORMED PHENOTYPE TO NIH 3T3 CELLS [J].
DIFIORE, PP ;
PIERCE, JH ;
FLEMING, TP ;
HAZAN, R ;
ULLRICH, A ;
KING, CR ;
SCHLESSINGER, J ;
AARONSON, SA .
CELL, 1987, 51 (06) :1063-1070