The pore helix dipole has a minor role in inward rectifier channel function

被引:47
作者
Chatelain, FC
Alagem, N
Xu, Q
Pancaroglu, R
Reuveny, E
Minor, DL
机构
[1] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Biochem & Biophys, Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Cellular & Mol Pharmacol, Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA
[3] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
关键词
D O I
10.1016/j.neuron.2005.08.022
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ion channels lower the energetic barrier for ion passage across cell membranes and enable the generation of bioelectricity. Electrostatic interactions between permeant ions and channel pore helix dipoles have been proposed as a general mechanism for facilitating ion passage. Here, using genetic selections to probe interactions of an exemplar potassium channel blocker, barium, with the inward rectifier Kir2.1, we identify mutants bearing positively charged residues in the potassium channel signature sequence at the pore helix C terminus. We show that these channels are functional, selective, resistant to barium block, and have minimally altered conductance properties. Both the experimental data and model calculations indicate that barium resistance originates from electrostatics. We demonstrate that potassium channel function is remarkably unperturbed when positive charges occur near the permeant ions at a location that should counteract pore helix electrostatic effects. Thus, contrary to accepted models, the pore helix dipole seems to be a minor factor in potassium channel permeation.
引用
收藏
页码:833 / 843
页数:11
相关论文
共 51 条
[1]   Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel:: differential contribution by two discrete residues [J].
Alagem, N ;
Dvir, M ;
Reuveny, E .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 534 (02) :381-393
[2]   On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 124 (06) :679-690
[3]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[4]   DIPOLES LOCALIZED AT HELIX TERMINI OF PROTEINS STABILIZE CHARGES [J].
AQVIST, J ;
LUECKE, H ;
QUIOCHO, FA ;
WARSHEL, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (05) :2026-2030
[5]   INTERACTION OF BARIUM IONS WITH POTASSIUM CHANNELS IN SQUID GIANT-AXONS [J].
ARMSTRONG, CM ;
TAYLOR, SR .
BIOPHYSICAL JOURNAL, 1980, 30 (03) :473-488
[6]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[7]   A microscopic view of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :8644-8648
[8]   Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity [J].
Bichet, D ;
Lin, YF ;
Ibarra, CA ;
Huang, CS ;
Yi, BA ;
Jan, YN ;
Jan, LY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4441-4446
[9]   Merging functional studies with structures of inward-rectifier K+ channels [J].
Bichet, D ;
Haass, FA ;
Jan, LY .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (12) :957-967
[10]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217