A High-Coincidence Twin Boundary in Lithium Battery Material LiCoO2

被引:12
作者
Fisher, Craig A. J. [1 ]
Huang, Rong [1 ,2 ]
Hitosugi, Taro [3 ]
Moriwake, Hiroki [1 ]
Kuwabara, Akihide [1 ]
Ikuhara, Yumi H. [1 ]
Oki, Hideki [4 ]
Ikuhara, Yuichi [1 ,5 ]
机构
[1] Japan Fine Ceram Ctr, Nanostruct Res Lab, Atsuta Ku, Nagoya, Aichi 4568587, Japan
[2] E China Normal Univ, Key Lab Polar Mat & Devices, Shanghai 200062, Peoples R China
[3] Tohoku Univ, WPI Adv Inst Mat Res WPI AIMR, Sendai, Miyagi 9808577, Japan
[4] Toyota Motor Co Ltd, Shizuoka 4101193, Japan
[5] Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan
关键词
Lithium Cobaltite; Lithium Ion Battery; Scanning Transmission Electron Microscopy; Atomistic Simulation; MICROSTRUCTURE; INTERCALATION; DIFFUSION; ELECTRODE;
D O I
10.1166/nnl.2012.1301
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A high-coincidence twin boundary observed by scanning transmission electron microscopy in a thin film of LiCoO2 and characterized using atomistic simulation techniques is reported. The boundary can be described in coincidence site lattice theory as a near-Sigma 2 (1 (1) over bar0 (4) over bar)/4 (4) over bar 40 (1) over bar] theta = 180 degrees twist boundary. Using a two-body potential model the grain boundary excess energy was calculated to be very low (0.09 Jm(-2)), indicating high stability. Together with the surface energy of a (1 (1) over bar0 (4) over bar) terminated crystal, this gives a work of cohesion of 1.75 Jm(-2), also consistent with a strongly bound interface. Although the layered structure is not drastically perturbed within the vicinity of the symmetrical grain boundary, small changes in the d-spacing within 4 to 5 planes (similar to 0.6 nm) of the interface are associated with large changes in the Li ion migration energies.
引用
收藏
页码:165 / 168
页数:4
相关论文
共 16 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   The General Utility Lattice Program (GULP) [J].
Gale, JD ;
Rohl, AL .
MOLECULAR SIMULATION, 2003, 29 (05) :291-341
[4]   COINCIDENCE ORIENTATIONS OF GRAINS IN RHOMBOHEDRAL MATERIALS [J].
GRIMMER, H .
ACTA CRYSTALLOGRAPHICA SECTION A, 1989, 45 :505-523
[5]   Lattice model calculation of the strain energy density and other properties of crystalline LiCoO2 [J].
Hart, FX ;
Bates, JB .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (12) :7560-7566
[6]   Lithium-ion conductors of the system LiCo1-xFexO2, preparation and structural investigation [J].
Holzapfel, M ;
Haak, C ;
Ott, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2001, 156 (02) :470-479
[7]   Real-time direct observation of Li in LiCoO2 cathode material [J].
Huang, Rong ;
Hitosugi, Taro ;
Findlay, Scott D. ;
Fisher, Craig A. J. ;
Ikuhara, Yumi H. ;
Moriwake, Hiroki ;
Oki, Hideki ;
Ikuhara, Yuichi .
APPLIED PHYSICS LETTERS, 2011, 98 (05)
[8]  
Mott MF, 1938, T FARADAY SOC, V34, P0485
[9]   7Li NMR study on Li+ ionic diffusion and phase transition in LixCoO2 [J].
Nakamura, Koichi ;
Ohno, Hideki ;
Okamura, Kazuhiro ;
Michihiro, Yoshitaka ;
Moriga, Toshihiro ;
Nakabayashi, Ichiro ;
Kanashiro, Tatsuo .
SOLID STATE IONICS, 2006, 177 (9-10) :821-826
[10]   Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J].
Okubo, Masashi ;
Hosono, Eiji ;
Kim, Jedeok ;
Enomoto, Masaya ;
Kojima, Norimichi ;
Kudo, Tetsuichi ;
Zhou, Haoshen ;
Honma, Itaru .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7444-7452