Self-organized networks as a representation of quantum statistics

被引:3
作者
Bianconi, G [1 ]
机构
[1] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2000年 / 14卷 / 29-31期
关键词
D O I
10.1142/S0217979200003824
中图分类号
O59 [应用物理学];
学科分类号
摘要
A new class of self organized networks is described that is relevant to understand the emerging order in a large number of complex systems such as growing biological systems, the web, and heterogeneous phases of correlated condensed matter systems formed by doping. The Bose and Fermi quantum distributions are shown to be the right tool to describe the two extreme limit distributions, the fermionic Cayley-tree network and the bosonic scale-free network. In this new large class of self-organized networks the two different types of self organization coexists, maintaining the same 'ergodic' nature and are described by a 'mixed' quantum distribution.
引用
收藏
页码:3356 / 3361
页数:6
相关论文
共 14 条
[1]   Power-Law distribution of the World Wide Web [J].
Adamic, LA ;
Huberman, BA ;
Barabási, AL ;
Albert, R ;
Jeong, H ;
Bianconi, G .
SCIENCE, 2000, 287 (5461)
[2]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[3]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[4]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[5]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[8]   THE FIXED-SCALE TRANSFORMATION APPROACH TO FRACTAL GROWTH [J].
ERZAN, A ;
PIETRONERO, L ;
VESPIGNANI, A .
REVIEWS OF MODERN PHYSICS, 1995, 67 (03) :545-604
[9]  
Faloutsos M, 1999, COMP COMM R, V29, P251, DOI 10.1145/316194.316229
[10]  
GABRIELLI A, CONDMAT9910425