Nonrigid motion analysis based on dynamic refinement of finite element models

被引:4
作者
Tsap, LV [1 ]
Goldgof, DB [1 ]
Sarkar, S [1 ]
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
来源
1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1998年
关键词
D O I
10.1109/CVPR.1998.698684
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose new algorithms for accurate nonrigid motion tracking. Given only a set of sparse correspondences and incomplete or missing information about geometry or material properties, we recover dense motion vectors using nonlinear finite element models. The method is based on the iterative analysis of the differences between the actual and predicted behavior. Large differences indicate that an object's properties are not captured properly by the model. Feedback from the images during the motion allows the refinement of the model by minimizing the error between the expected a?ld true position of the object's points. Unknown parameters are recovered using an iterative descent search for the best model that approximates nonrigid motion of the given object. Thus, during tracking the model is refined which, in turn, improves tracking quality. The method teas applied successfully to man-made elastic materials and human skin to recover unknown elasticity, to complex 3-D objects to find details of their geometry, and to a hand motion analysis application.
引用
收藏
页码:728 / 734
页数:7
相关论文
empty
未找到相关数据