Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing

被引:37
作者
Kenah, Eben [1 ]
Robins, James M. [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
infectious diseases; percolation;
D O I
10.1016/j.jtbi.2007.09.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we outline the theory of epidemic percolation networks and their use in the analysis of stochastic susceptible-infectious-removed (SIR) epidemic models on undirected contact networks. We then show how the same theory can be used to analyze stochastic SIR models with random and proportionate mixing. The epidemic percolation networks for these models are purely directed because undirected edges disappear in the limit of a large population. In a series of simulations, we show that epidemic percolation networks accurately predict the mean outbreak size and probability and final size of an epidemic for a variety of epidemic models in homogeneous and heterogeneous populations. Finally, we show that epidemic percolation networks can be used to re-derive classical results from several different areas of infectious disease epidemiology. In an Appendix, we show that an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model in a closed population and prove that the distribution of outbreak sizes given the infection of any given node in the SIR model is identical to the distribution of its out-component sizes in the corresponding probability space of epidemic percolation networks. We conclude that the theory of percolation on semi-directed networks provides a very general framework for the analysis of stochastic SIR models in closed populations. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:706 / 722
页数:17
相关论文
共 26 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
ANDERSON R M, 1991
[3]  
Andersson H., 2000, Lecture Notes in Statistics, V151
[4]   A general model for stochastic SIR epidemics with two levels of mixing [J].
Ball, F ;
Neal, P .
MATHEMATICAL BIOSCIENCES, 2002, 180 :73-102
[5]   Generalized percolation in random directed networks -: art. no. 016106 [J].
Boguñá, M ;
Serrano, MA .
PHYSICAL REVIEW E, 2005, 72 (01)
[6]   Graph structure in the Web [J].
Broder, A ;
Kumar, R ;
Maghoul, F ;
Raghavan, P ;
Rajagopalan, S ;
Stata, R ;
Tomkins, A ;
Wiener, J .
COMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND TELECOMMUNICATIONS NETWORKING, 2000, 33 (1-6) :309-320
[7]  
DALEY DJ, 1999, EPIDEMIC MODELLING I
[8]  
De Serres G, 2000, AM J EPIDEMIOL, V151, P1039, DOI 10.1093/oxfordjournals.aje.a010145
[9]  
Diekmann O., 2000, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation
[10]   Giant strongly connected component of directed networks [J].
Dorogovtsev, SN ;
Mendes, JFF ;
Samukhin, AN .
PHYSICAL REVIEW E, 2001, 64 (02) :4