Enhancement on proton conductivity of inorganic-organic composite electrolyte membrane by addition of sulfonic acid group

被引:62
作者
Munakata, H
Chiba, H
Kanamura, K
机构
[1] Tokyo Metropolitan Univ, Grad Sch Engn, Dept Appl Chem, Hachioji, Tokyo 1920397, Japan
[2] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
关键词
fuel cell; proton conductivity; surface sulfonation; three-dimensionally ordered macroporous silica; composite membrane;
D O I
10.1016/j.ssi.2005.03.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A proton-conducting porous silica matrix for composite membranes was prepared by introduction of sulfonic acid groups on the surface. The surface modification of pores in the porous silica membrane was performed by using 3-mercaptopropyltrimethoxysilane (SH oxidation method) or 1,3-propanesultone (direct reaction method). The sulfonated silica matrix exhibited high proton conductivity of 6.0 x 10(-3) S cm(-1) at 60 degrees C under 90% relative humidity. This value was about 400 times higher than that of unmodified silica matrix. The proton conductivity of the composite membrane filled by a proton-conducting gel polymer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), was considerably enhanced by using the sulfonated silica matrix. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:2445 / 2450
页数:6
相关论文
共 20 条
[1]   Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface [J].
Arico, AS ;
Creti, P ;
Antonucci, PL ;
Cho, J ;
Kim, H ;
Antonucci, V .
ELECTROCHIMICA ACTA, 1998, 43 (24) :3719-3729
[2]   Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs [J].
Choi, JH ;
Park, KW ;
Kwon, BK ;
Sung, YE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) :A973-A978
[3]   PROTON-TRANSFER AND SUPERIONIC CONDUCTIVITY IN SOLIDS AND GELS [J].
COLOMBAN, P ;
NOVAK, A .
JOURNAL OF MOLECULAR STRUCTURE, 1988, 177 :277-308
[4]   Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C [J].
Costamagna, P ;
Yang, C ;
Bocarsly, AB ;
Srinivasan, S .
ELECTROCHIMICA ACTA, 2002, 47 (07) :1023-1033
[5]   Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J].
Genies, C ;
Mercier, R ;
Sillion, B ;
Cornet, N ;
Gebel, G ;
Pineri, M .
POLYMER, 2001, 42 (02) :359-373
[6]   THE MORPHOLOGY IN NAFION PERFLUORINATED MEMBRANE PRODUCTS, AS DETERMINED BY WIDE-ANGLE AND SMALL-ANGLE X-RAY STUDIES [J].
GIERKE, TD ;
MUNN, GE ;
WILSON, FC .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1981, 19 (11) :1687-1704
[7]   Recent advances in perfluorinated ionomer membranes: Structure, properties and applications [J].
HeitnerWirguin, C .
JOURNAL OF MEMBRANE SCIENCE, 1996, 120 (01) :1-33
[8]   Proton conductivity: Materials and applications [J].
Kreuer, KD .
CHEMISTRY OF MATERIALS, 1996, 8 (03) :610-641
[9]   Composite membranes for direct methanol fuel cells [J].
Libby, B ;
Smyrl, WH ;
Cussler, EL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (12) :A197-A199
[10]   Preparation of organic-inorganic composite electrolyte membrane for direct methanol fuel cell [J].
Mitsui, T ;
Morikawa, H ;
Kanamura, K .
ELECTROCHEMISTRY, 2002, 70 (12) :934-936