Robust stabilization of nonlinear systems with pointwise norm-bounded uncertainties: A control Lyapunov function approach

被引:27
作者
Battilotti, S [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, Rome, Italy
关键词
Lyapunov functions; robust stabilization; unstructured uncertainties;
D O I
10.1109/9.739061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the authors give a necessary and sufficient condition for globally stabilizing a nonlinear system, robustly with respect to unstructured uncertainties <(Phi)over tilde>(u,x,t). norm-bounded for each fixed x and u. This condition requires one to find a smooth, proper, and positive definite solution V(x) of a suitable partial differential inequality depending only on the system data. A procedure, based on the knowledge of V (x)? is outlined for constructing almost smooth robustly stabilizing controllers. Our approach, based on Lyapunov functions, generalizes previous results for linear uncertain systems and establishes a precise connection between robust stabilization, on one hand, and H(infinity)-control sector conditions and input-to-state stabilization on the other.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 23 条
[1]   H-INFINITY CONTROL FOR NONLINEAR-SYSTEMS WITH OUTPUT-FEEDBACK [J].
BALL, JA ;
HELTON, JW ;
WALKER, ML .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (04) :546-559
[2]   Global output regulation and disturbance attenuation with global stability via measurement feedback for a class of nonlinear systems [J].
Battilotti, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :315-327
[3]   Universal controllers for robust control problems [J].
Battilotti, S .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1997, 10 (02) :188-202
[4]  
BATTILOTTI S, 1994, IEEE DECIS CONTR P, P808, DOI 10.1109/CDC.1994.410851
[5]  
Boothby W. M., 1975, An introduction to differentiable manifolds and Riemannian geometry
[6]  
Collado J. M., 1988, SYST CONTROL LETT, V11, P83, DOI [10.1016/0167-6911(88)90116-8, DOI 10.1016/0167-6911(88)90116-8]
[7]  
Freeman R. A., 1996, Robust Nonlinear Control Design: State-space and Lyapunov Techniques
[8]  
FREEMAN RA, 1994, IEEE DECIS CONTR P, P3533, DOI 10.1109/CDC.1994.411695
[9]   Inverse optimality in robust stabilization [J].
Freeman, RA ;
Kokotovic, PV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (04) :1365-1391
[10]   DISTURBANCE ATTENUATION AND H-INFINITY-CONTROL VIA MEASUREMENT FEEDBACK IN NONLINEAR-SYSTEMS [J].
ISIDORI, A ;
ASTOLFI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1283-1293