Function of WW domains as phosphoserine- or phosphothreonine-binding modules

被引:614
作者
Lu, PJ
Zhou, XZ
Shen, MH
Lu, KP [1 ]
机构
[1] Beth Israel Deaconess Med Ctr, Dept Med, Div Hematol Oncol, Canc Biol Program, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA 02215 USA
关键词
D O I
10.1126/science.283.5406.1325
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-interacting modules help determine the specificity of signal transduction events, and protein phosphorylation can modulate the assembly of such modules into specific signaling complexes. Although phosphotyrosine-binding modules have been well-characterized, phosphoserine- or phosphothreonine-binding modules have not been described. WW domains are small protein modules found in various proteins that participate in cell signaling or regulation, WW domains of the essential mitotic prolyl isomerase Pin1 and the ubiquitin ligase Nedd4 bound to phosphoproteins, including physiological substrates of enzymes, in a phosphorylation-dependent manner. The Pin1 WW domain functioned as a phosphoserine- or phosphothreonine-binding module, with properties similar to those of SRC homology 2 domains, Phosphoserine- or phosphothreonine-binding activity was required for Pin1 to interact with its substrates in vitro and to perform its essential function in vivo.
引用
收藏
页码:1325 / 1328
页数:4
相关论文
共 53 条
[1]   FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands [J].
Bedford, MT ;
Chan, DC ;
Leder, P .
EMBO JOURNAL, 1997, 16 (09) :2376-2383
[2]   THE WW DOMAIN OF YES-ASSOCIATED PROTEIN BINDS A PROLINE-RICH LIGAND THAT DIFFERS FROM THE CONSENSUS ESTABLISHED FOR SRC HOMOLOGY 3-BINDING MODULES [J].
CHEN, HI ;
SUDOL, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7819-7823
[3]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[4]   Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation [J].
Clurman, BE ;
Sheaff, RJ ;
Thress, K ;
Groudine, M ;
Roberts, JM .
GENES & DEVELOPMENT, 1996, 10 (16) :1979-1990
[5]   MODULAR BINDING DOMAINS IN SIGNAL-TRANSDUCTION PROTEINS [J].
COHEN, GB ;
REN, RB ;
BALTIMORE, D .
CELL, 1995, 80 (02) :237-248
[6]   NEGATIVE REGULATION OF THE WEE1 PROTEIN-KINASE BY DIRECT ACTION OF THE NIM1/CDR1 MITOTIC INDUCER [J].
COLEMAN, TR ;
TANG, ZH ;
DUNPHY, WG .
CELL, 1993, 72 (06) :919-929
[7]  
COPLEY RR, 1994, J MOL BIOL, V242, P321
[8]   The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1 [J].
Crenshaw, DG ;
Yang, J ;
Means, AR ;
Kornbluth, S .
EMBO JOURNAL, 1998, 17 (05) :1315-1327
[9]   Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein [J].
Galan, JM ;
HaguenauerTsapis, R .
EMBO JOURNAL, 1997, 16 (19) :5847-5854
[10]   SEQUENCE AND MUTATIONAL ANALYSIS OF ESS1, A GENE ESSENTIAL FOR GROWTH IN SACCHAROMYCES-CEREVISIAE [J].
HANES, SD ;
SHANK, PR ;
BOSTIAN, KA .
YEAST, 1989, 5 (01) :55-72