Bias corrections for Random Forest in regression using residual rotation

被引:55
作者
Song, Jongwoo [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Random Forest; Bias correction; Regression;
D O I
10.1016/j.jkss.2015.01.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies bias correction methods for Random Forest in regression. Random Forest is a special bagging trees that can be used in regression and classification. It is a popular method because of its high prediction accuracy. However, we find that Random Forest can have significant bias in regression at times. We propose a method to reduce the bias of Random Forest in regression using residual rotation. The real data applications show that our method can reduce the bias of Random Forest significantly. (C) 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 11 条
  • [1] Bache K., 2014, UCI MACHINE LEARNING
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] Breiman L., 1999, 547 U CAL
  • [4] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [5] Hastie Trevor, 2001, ELEMENTS STAT LEARNI
  • [6] Liaw A., 2009, R PACKAGE RANDOMFORE
  • [7] Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO
  • [8] 2
  • [9] Ripley BD., 2007, PATTERN RECOGN
  • [10] Bias in random forest variable importance measures: Illustrations, sources and a solution
    Strobl, Carolin
    Boulesteix, Anne-Laure
    Zeileis, Achim
    Hothorn, Torsten
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)