Identifying and counting point defects in carbon nanotubes

被引:225
作者
Fan, YW [1 ]
Goldsmith, BR [1 ]
Collins, PG [1 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1516
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prevailing conception of carbon nanotubes and particularly single-walled carbon nanotubes (SWNTs) continues to be one of perfectly crystalline wires. Here, we demonstrate a selective electrochemical method that labels point defects and makes them easily visible for quantitative analysis. High-quality SWNTs are confirmed to contain one defect per 4 mu m on average, with a distribution weighted towards areas of SWNT curvature. Although this defect density compares favourably to high-quality, silicon single-crystals, the presence of a single defect can have tremendous electronic effects in one-dimensional conductors such as SWNTs. We demonstrate a one-to-one correspondence between chemically active point defects and sites of local electronic sensitivity in SWNT circuits, confirming the expectation that individual defects may be critical to understanding and controlling variability, noise and chemical sensitivity in SWNT electronic devices. By varying the SWNT synthesis technique, we further show that the defect spacing can be varied over orders of magnitude. The ability to detect and analyse point defects, especially at very low concentrations, indicates the promise of this technique for quantitative process analysis, especially in nanoelectronics development.
引用
收藏
页码:906 / 911
页数:6
相关论文
共 38 条
[1]   Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts [J].
An, L ;
Owens, JM ;
McNeil, LE ;
Liu, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (46) :13688-13689
[2]   Scanned probe microscopy of electronic transport in carbon nanotubes [J].
Bachtold, A ;
Fuhrer, MS ;
Plyasunov, S ;
Forero, M ;
Anderson, EH ;
Zettl, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :6082-6085
[3]   Covalent surface chemistry of single-walled carbon nanotubes [J].
Banerjee, S ;
Hemraj-Benny, T ;
Wong, SS .
ADVANCED MATERIALS, 2005, 17 (01) :17-29
[4]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[5]   Resonant electron scattering by defects in single-walled carbon nanotubes [J].
Bockrath, M ;
Liang, WJ ;
Bozovic, D ;
Hafner, JH ;
Lieber, CM ;
Tinkham, M ;
Park, HK .
SCIENCE, 2001, 291 (5502) :283-285
[6]   Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry [J].
Bom, D ;
Andrews, R ;
Jacques, D ;
Anthony, J ;
Chen, BL ;
Meier, MS ;
Selegue, JP .
NANO LETTERS, 2002, 2 (06) :615-619
[7]   Flexible nanotube electronics [J].
Bradley, K ;
Gabriel, JCP ;
Grüner, G .
NANO LETTERS, 2003, 3 (10) :1353-1355
[8]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[9]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[10]   Solution properties of single-walled carbon nanotubes [J].
Chen, J ;
Hamon, MA ;
Hu, H ;
Chen, YS ;
Rao, AM ;
Eklund, PC ;
Haddon, RC .
SCIENCE, 1998, 282 (5386) :95-98