Addressing processing problems associated with plasma spraying of hydroxyapatite coatings

被引:203
作者
Cheang, P
Khor, KA
机构
[1] NANYANG TECHNOL UNIV,SCH MECH & PROD ENGN,SINGAPORE 2263,SINGAPORE
[2] NANYANG TECHNOL UNIV,SCH APPL SCI,SINGAPORE 2263,SINGAPORE
关键词
hydroxyapatite; plasma spraying; microstructure; powder properties; bioactive phases;
D O I
10.1016/0142-9612(96)82729-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biomedical coatings generally have to satisfy specific requirements such as a high degree of crystallinity (for positive biological responses), good coating adhesion and optimal porosity. These are necessary to enhance biocompatibility, accelerate post-operative healing and improve fixation. Thermal spray processes have been frequently used to deposit functionally active biomedical coatings, such as hydroxyapatite (HA), onto prosthetic implants. The benefits of HA materials in coated implants have been widely acknowledged, but the occurrence of several poor performances has generated concerns over the consistency and reliability of thermally sprayed HA coatings. Recent investigations using HA coatings have shown that process related variability has significant influence on coating characteristics such as phase composition, structure and chemical composition and performance such as bioresorption, degradation and bone apposition. Variation in process parameters such as powder morphology can induce microstructural and mechanical inconsistencies that have an effect on the service performance of the coating. In order to reach some acceptable level of reliability, it may be necessary to control existing variability in commercially available HA feedstock. In addition, certain opposing factors severely constrain the means to achieve the necessary coating conditions via thermal spraying alone; therefore, creating the need to introduce other innovative or secondary treatment stages to attain the desired results. This paper highlights some of the problems associated with plasma spray coating of HA and suggests that tailoring the powder feedstock morphology and properties through suitable conditioning processes can aid the deposition efficiency and produce an acceptable coating structure.
引用
收藏
页码:537 / 544
页数:8
相关论文
共 31 条
[1]  
CAHN RW, 1993, MAT SCI TECHNOLOGY M, V14, P278
[2]  
CHEANG P, 1989, THESIS MONASH U AUST
[3]  
CHEANG P, 1994, P 8 INT C BIOM ENG S, P531
[4]   MICROSTRUCTURE AND CRYSTALLINITY IN HYDROXYAPATITE COATINGS [J].
CHEN, JY ;
WOLKE, JGC ;
DEGROOT, K .
BIOMATERIALS, 1994, 15 (05) :396-399
[5]  
DEGROOT K, 1982, BIOCERAMICS CALCIUM
[6]  
DEGROOT K, 1990, HDB BIOACTIVE CERAMI, V2, P3
[7]   STRUCTURAL-ANALYSIS OF HYDROXYAPATITE COATINGS ON TITANIUM [J].
DUCHEYNE, P ;
VANRAEMDONCK, W ;
HEUGHEBAERT, JC ;
HEUGHEBAERT, M .
BIOMATERIALS, 1986, 7 (02) :97-103
[8]  
Gerdeman D A, 1972, ARC PLASMA TECHNOLOG
[9]  
GROSS KA, 1990, THESIS MONASH U AUST
[10]  
GROSS KA, 1993, CHARACTERISATION PER, P256