Four classes of salicylate-induced tobacco genes

被引:58
作者
Horvath, DM [1 ]
Huang, DJ [1 ]
Chua, NH [1 ]
机构
[1] Rockefeller Univ, Plant Mol Biol Lab, New York, NY 10021 USA
关键词
auxin; differential display; hydrogen peroxide;
D O I
10.1094/MPMI.1998.11.9.895
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have identified and characterized fragments of 15 salicylic acid (SA) early response genes. The kinetics of induction and response to cycloheximide (CHX) treatment allowed classification of genes into four groups. Classes I-III are characterized by immediate-early responses, showing increased accumulation of mRNA within 30 min of SA treatment. Moreover, CHX did not block induction of these genes, indicating that latent cellular factors mediate the SA response. Class IV genes were induced more slowly, but still within 2 to 3 h of SA treatment, and required protein synthesis for expression. Although identified in this study as SA-responsive genes, several could also be induced by other compounds. live genes were characterized in more detail, including isolation of cDNA sequences and additional analysis of gene expression. Sequence analysis revealed that the class I gene, C18-1, is the previously identified ethylene response element binding protein 1 (EREBP1), an ethylene-induced transcription factor for basic pathogenesis-related (PR) genes, whereas the class III gene, G8-1, is a novel sequence. G8-1 was found to be strongly induced only by SA and its active analogs and was exquisitely sensitive to low SA concentrations. These and other genes were found to be activated at early times following tobacco mosaic virus infection of resistant tobacco genotypes.
引用
收藏
页码:895 / 905
页数:11
相关论文
共 47 条
[1]   Early genes and auxin action [J].
Abel, S ;
Theologis, A .
PLANT PHYSIOLOGY, 1996, 111 (01) :9-17
[2]   COMPLEXITY OF THE EARLY GENETIC RESPONSE TO GROWTH-FACTORS IN MOUSE FIBROBLASTS [J].
ALMENDRAL, JM ;
SOMMER, D ;
MACDONALDBRAVO, H ;
BURCKHARDT, J ;
PERERA, J ;
BRAVO, R .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (05) :2140-2148
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   LIGHT-INFLUENCED EXTRACELLULAR ACCUMULATION OF BETA-(PATHOGENESIS-RELATED) PROTEINS IN NICOTIANA GREEN TISSUE INDUCED BY VARIOUS CHEMICALS OR PROLONGED FLOATING ON WATER [J].
ASSELIN, A ;
GRENIER, J ;
COTE, F .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1985, 63 (07) :1276-1283
[5]   ISOLATION OF INTERLEUKIN-2-INDUCED IMMEDIATE-EARLY GENES [J].
BEADLING, C ;
JOHNSON, KW ;
SMITH, KA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2719-2723
[6]  
BEVAN M, 1997, EU ARABIDOPSIS SEQUE
[7]   HYDROGEN-PEROXIDE DOES NOT FUNCTION DOWNSTREAM OF SALICYLIC-ACID IN THE INDUCTION OF PR PROTEIN EXPRESSION [J].
BI, YM ;
KENTON, P ;
MUR, L ;
DARBY, R ;
DRAPER, J .
PLANT JOURNAL, 1995, 8 (02) :235-245
[8]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[9]   NUCLEOTIDE-SEQUENCE OF CDNA-ENCODING THE CATALYTIC SUBUNIT OF PHOSPHORYLASE-KINASE FROM RAT SOLEUS MUSCLE [J].
CAWLEY, KC ;
RAMACHANDRAN, C ;
GORIN, FA ;
WALSH, DA .
NUCLEIC ACIDS RESEARCH, 1988, 16 (05) :2355-2356
[10]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886