Active vibration control of a modular robot combining a back-propagation neural network with a genetic algorithm

被引:26
作者
Li, YM [1 ]
Liu, YG
Liu, XP
机构
[1] Univ Macau, Fac Sci & Technol, Dept Electromech Engn, Av Padre Tomas Pereira SJ, Taipa, Macao, Peoples R China
[2] Beijing Univ Posts & Telecommun, Automat Sch, Beijing 100876, Peoples R China
关键词
active vibration control; finite-element analysis; modular robot; neural network;
D O I
10.1177/1077546305045578
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a genetic algorithm based back-propagation neural network suboptimal controller is developed to control the vibration of a nine-degrees-of-freedom modular robot. A finite-element method is used to model the modules of the robot, and the entire system dynamic equation is established using the substructure synthesis method. Then the joint stiffness parameters are identified based on the experimental modal analysis experiment. After modeling the whole structure with the models of the robotic modules and the joint parameters, simulations of the vibration control for the modular robot in several configurations are carried out. It is shown that the control method presented in this paper is effective at suppressing the residual vibrations of the modular robot.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 17 条
[1]  
Bathe K, 2007, Finite element procedures
[2]  
DAVIES L, 1991, HDB GENETIC ALGORITH
[3]   A method for modular robots generating dynamics automatically [J].
Fei, YQ ;
Zhao, XF ;
Song, LB .
ROBOTICA, 2001, 19 :59-66
[4]   STRUCTURE DECISION METHOD FOR SELF-ORGANIZING ROBOTS BASED ON CELL STRUCTURES-CEBOT [J].
FUKUDA, T ;
NAKAGAWA, S ;
KAWAUCHI, Y ;
BUSS, M .
PROCEEDINGS - 1989 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOL 1-3, 1989, :695-700
[5]   Dynamic modeling and simulation of a flexible robotic manipulator [J].
Gamarra-Rosado, VO ;
Yuhara, EAO .
ROBOTICA, 1999, 17 :523-528
[6]  
Hashimoto M., 1998, International Journal of Robotics & Automation, V13, P43
[7]  
Haykin S., 1999, NEURAL NETWORK COMPR
[8]  
Li YM, 2003, IEEE INT CONF ROBOT, P3254
[9]   The identification of joint parameters for modular robots using fuzzy theory and a genetic algorithm [J].
Li, YM ;
Liu, XP ;
Peng, ZY ;
Liu, YG .
ROBOTICA, 2002, 20 (05) :509-517
[10]  
LIU X, 1999, ASME DES ENG TECHN C, P1