Human cruciform binding protein belongs to the 14-3-3 family

被引:48
作者
Todd, A
Cossons, N
Aitken, A
Price, GB
Zannis-Hadjopoulos, M
机构
[1] McGill Univ, Ctr Canc, Montreal, PQ H3G 1Y6, Canada
[2] Univ Edinburgh, Dept Biochem, Edinburgh EH8 9XD, Midlothian, Scotland
关键词
D O I
10.1021/bi980768k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cruciform DNA has been implicated in the initiation of DNA replication. Recently, we identified and purified from human (HeLa) cells a protein, CBP, with binding specificity for cruciform DNA. We have reported previously that the CBP activity sediments at approximately 66 kDa in a glycerol gradient. Here, photochemical cross-linking studies and Southwestern analyses confirm that a 70 kDa polypeptide interacts specifically with cruciform DNA. Microsequence analysis of tryptic peptides of the 70 kDa CBP reveals that it is 100% homologous to the 14-3-3 family of proteins and shows that CBP contains the epsilon, beta, gamma, and zeta isoforms of the 14-3-3 family, In addition to polypeptides with the characteristic molecular mass of 14-3-3 proteins (30 and 33 kDa), CBP also contains a polypeptide of 35 kDa which is recognized by an antibody specific for the epsilon isoform of 14-3-3. Cruciform-specific binding activity is also detected in 14-3-3 proteins purified from sheep brain. Immunofluorescene studies confirm the presence of the epsilon, beta, and zeta isoforms of 14-3-3 proteins in the nuclei of HeLa cells. The 14-3-3 family of proteins has been implicated in cell cycle control, and members of this family have been shown to interact with various signaling proteins, Cruciform binding is a new activity associated with the 14-3-3 family.
引用
收藏
页码:14317 / 14325
页数:9
相关论文
共 67 条
[1]   14-3-3-ALPHA AND 14-3-3-DELTA ARE THE PHOSPHORYLATED FORMS OF RAF-ACTIVATING 14-3-3-BETA AND 14-3-3-ZETA - IN-VIVO STOICHIOMETRIC PHOSPHORYLATION IN BRAIN AT A SER-PRO-GLU-LYS MOTIF [J].
AITKEN, A ;
HOWELL, S ;
JONES, D ;
MADRAZO, J ;
PATEL, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) :5706-5709
[2]   14-3-3 PROTEINS ON THE MAP [J].
AITKEN, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :95-97
[3]   14-3-3 PROTEINS - A HIGHLY CONSERVED, WIDESPREAD FAMILY OF EUKARYOTIC PROTEINS [J].
AITKEN, A ;
COLLINGE, DB ;
VANHEUSDEN, BPH ;
ISOBE, T ;
ROSEBOOM, PH ;
ROSENFELD, G ;
SOLL, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (12) :498-501
[4]   14-3-3 and its possible role in co-ordinating multiple signalling pathways [J].
Aitken, A .
TRENDS IN CELL BIOLOGY, 1996, 6 (09) :341-347
[5]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[6]   Localization of 14-3-3 proteins in the nuclei of arabidopsis and maize [J].
Bihn, EA ;
Paul, AL ;
Wang, SW ;
Erdos, GW ;
Ferl, RJ .
PLANT JOURNAL, 1997, 12 (06) :1439-1445
[7]   HOMEODOMAIN PROTEIN-BINDING SITES, INVERTED REPEATS, AND NUCLEAR MATRIX ATTACHMENT REGIONS ALONG THE HUMAN BETA-GLOBIN GENE-COMPLEX [J].
BOULIKAS, T .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1993, 52 (01) :23-36
[8]   14-3-3-PROTEINS - HOT NUMBERS IN SIGNAL-TRANSDUCTION [J].
BURBELO, PD ;
HALL, A .
CURRENT BIOLOGY, 1995, 5 (02) :95-96
[9]   EUKARYOTIC DNA-REPLICATION [J].
CAMPBELL, JL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1986, 55 :733-771
[10]   14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila [J].
Chang, HC ;
Rubin, GM .
GENES & DEVELOPMENT, 1997, 11 (09) :1132-1139