Astronomical pacing of late Palaeocene to early Eocene global warming events

被引:468
作者
Lourens, LJ
Sluijs, A
Kroon, D
Zachos, JC
Thomas, E
Röhl, U
Bowles, J
Raffi, I
机构
[1] Univ Utrecht, Fac Geosci, Dept Earth Sci, NL-3584 CD Utrecht, Netherlands
[2] Univ Utrecht, Dept Palaeoecol, Palaeobot & Palynol Lab, NL-3584 CD Utrecht, Netherlands
[3] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands
[4] Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95064 USA
[5] Wesleyan Univ, Dept Earth & Environm Sci, Middletown, CT 06459 USA
[6] Yale Univ, Dept Geol & Geophys, Ctr Study Global Change, New Haven, CT 06520 USA
[7] Univ Bremen, DFG Res Ctr Ocean Margins, D-28359 Bremen, Germany
[8] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[9] Univ G DAnnunzio, Dipartimento Sci Terra, Fac Sci, I-66013 Chieti, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature03814
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum(1-4). The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates(5,6), resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually(7), comet impact(8), explosive volcanism(9,10) or ocean current reorganization and erosion at continental slopes(11), whereas orbital forcing has been excluded(12). Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge(13), which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene-Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene-Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the similar to 405-kyr and similar to 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.
引用
收藏
页码:1083 / 1087
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 2003, Geological Society ofAmerica Special Paper 369
[2]  
Bralower TJ, 1997, GEOLOGY, V25, P963, DOI 10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO
[3]  
2
[4]  
Bujak JP, 1998, LATE PALEOCENE-EARLY EOCENE CLIMATIC AND BIOTIC EVENTS IN THE MARINE AND TERRESTRIAL RECORDS, P277
[5]   Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n) -: art. no. 1097 [J].
Cramer, BS ;
Wright, JD ;
Kent, DV ;
Aubry, MP .
PALEOCEANOGRAPHY, 2003, 18 (04)
[6]  
Dickens GR, 1997, GEOLOGY, V25, P259, DOI 10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO
[7]  
2
[8]   DISSOCIATION OF OCEANIC METHANE HYDRATE AS A CAUSE OF THE CARBON-ISOTOPE EXCURSION AT THE END OF THE PALEOCENE [J].
DICKENS, GR ;
ONEIL, JR ;
REA, DK ;
OWEN, RM .
PALEOCEANOGRAPHY, 1995, 10 (06) :965-971
[9]   Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? [J].
Katz, ME ;
Cramer, BS ;
Mountain, GS ;
Katz, S ;
Miller, KG .
PALEOCEANOGRAPHY, 2001, 16 (06) :549-562
[10]   ABRUPT DEEP-SEA WARMING, PALAEOCEANOGRAPHIC CHANGES AND BENTHIC EXTINCTIONS AT THE END OF THE PALEOCENE [J].
KENNETT, JP ;
STOTT, LD .
NATURE, 1991, 353 (6341) :225-229