A conceptual framework for ecosystem stoichiometry: Balancing resource supply and demand

被引:87
作者
Schade, JD [1 ]
Espeleta, JF
Klausmeier, CA
McGroddy, ME
Thomas, SA
Zhang, LX
机构
[1] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[2] Org Trop Studies, La Selva Biol Stn, San Pedro, Costa Rica
[3] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
[4] Princeton Univ, Dept Ecol & Evolut Biol, Princeton, NJ 08540 USA
[5] Cornell Univ, Dept Ecol & Evolut Biol, Ithaca, NY 14853 USA
[6] Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China
关键词
D O I
10.1111/j.0030-1299.2005.14050.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The development of ecological stoichiometry has centered on organisms and their interactions, with less emphasis on the meaning or value of a comprehensive ecosystem stoichiometry at larger scales. Here we develop a conceptual framework that relates internal processes and exogenous factors in spatially- and temporally-linked ecosystems. This framework emerges from a functional view of ecosystem stoichiometry rooted in understanding the causes and consequences of relative stoichiometric balance, defined as the balance between ratios of resource supply and demand. We begin by modifying a graphical model based on resource ratio competition theory that relates resource supply and demand to ecosystem processes. This approach identified mechanisms, or stoichiometric schemes, through which ecosystems respond to variable resource supply. We expand this view by considering the effects of exogenous factors other then resource supply that comprise a stoichiometric template that influences stoichiometric balance within ecosystems. We then describe a number of examples of patterns in organismal stoichiometry in several types of ecosystems that illustrate stoichiometric schemes and factors that impinge directly on stoichiometric patterns. Next, we conduct an initial analysis of the stoichiometric effects of spatial linkages between ecosystems, and how those relate to boundary dynamics and hot spot development. We conclude by outlining research directions that will significantly advance our understanding of stoichiometric constraints on ecosystem structure and function.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 94 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]  
Andersen T, 1997, PELAGIC NUTR CYCLES
[3]  
[Anonymous], 2004, FOOD WEBS LANDSCAPE
[4]  
[Anonymous], 1997, Fractal River basins: Chance and self-organization
[5]   Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium [J].
Berman-Frank, I ;
Cullen, JT ;
Shaked, Y ;
Sherrell, RM ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 2001, 46 (06) :1249-1260
[6]  
Cadenasso ML, 2003, BIOSCIENCE, V53, P717, DOI 10.1641/0006-3568(2003)053[0717:AIASAT]2.0.CO
[7]  
2
[8]   Functional location of forest edges: gradients of multiple physical factors [J].
Cadenasso, ML ;
Traynor, MM ;
Pickett, STA .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1997, 27 (05) :774-782
[9]   Carbon sink for a century [J].
Chambers, JQ ;
Higuchi, N ;
Tribuzy, ES ;
Trumbore, SE .
NATURE, 2001, 410 (6827) :429-429
[10]   THE MINERAL-NUTRITION OF WILD PLANTS [J].
CHAPIN, FS .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1980, 11 :233-260