Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres

被引:45
作者
Isaeva, EV [1 ]
Shirokova, N [1 ]
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Pharmacol & Physiol, Newark, NJ 07103 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 547卷 / 02期
关键词
D O I
10.1113/jphysiol.2002.036129
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the present study, the link between cellular metabolism and Ca2+ signalling was investigated in permeabilized mammalian skeletal muscle. Spontaneous events of Ca2+ release from the sarcoplasmic reticulum. were detected with fluo-3 and confocal scanning microscopy. Mitochondrial functions were monitored by measuring local changes in mitochondrial membrane potential (with the potential-sensitive dye tetramethylrhodamine ethyl ester) and in mitochondrial [Ca2+] (with the Ca2+ indicator mag-rhod-2). Digital fluorescence imaging microscopy was used to quantify changes in the mitochondrial autofluorescence of NAD(P)H. When fibres were immersed in a solution without mitochondrial substrates, Ca2+ release events were readily observed. The addition of L-glutamate or pyruvate reversibly decreased the frequency of Ca2+ release events and increased mitochondrial membrane potential and NAD(P)H production. Application of various mitochondrial inhibitors led to the loss of mitochondrial [Ca2+] and promoted spontaneous Ca2+ release from the sarcoplasmic reticulum. In many cases, the increase in the frequency of Ca2+ release events was not accompanied by a rise in global [Ca2+](i). Our results suggest that mitochondria exert a negative control over Ca2+ signalling in skeletal muscle by buffering Ca2+ near Ca2+ release channels.
引用
收藏
页码:453 / 462
页数:10
相关论文
共 49 条
[1]   HINDLIMB MUSCLE FIBER POPULATIONS OF 5 MAMMALS [J].
ARIANO, MA ;
ARMSTRONG, RB ;
EDGERTON, VR .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1973, 21 (01) :51-55
[2]   Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions [J].
Arnaudeau, S ;
Kelley, WL ;
Walsh, JV ;
Demaurex, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29430-29439
[3]   Mitochondrial oversight of cellular Ca2+ signaling [J].
Babcock, DF ;
Hille, B .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (03) :398-404
[4]   Mitochondrial transport of cations: Channels, exchangers, and permeability transition [J].
Bernardi, P .
PHYSIOLOGICAL REVIEWS, 1999, 79 (04) :1127-1155
[5]   Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle [J].
Brum, G ;
González, A ;
Rengifo, J ;
Shirokova, N ;
Ríos, E .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 528 (03) :419-433
[6]   Mitochondrial calcium oscillations in C2C12 myotubes [J].
Challet, C ;
Maechler, P ;
Wollheim, CB ;
Ruegg, UT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (06) :3791-3797
[7]   Amplitude distribution of calcium sparks in confocal images:: Theory and studies with an automatic detection method [J].
Cheng, H ;
Song, LS ;
Shirokova, N ;
González, A ;
Lakatta, EG ;
Ríos, E ;
Stern, MD .
BIOPHYSICAL JOURNAL, 1999, 76 (02) :606-617
[8]   CALCIUM SPARKS - ELEMENTARY EVENTS UNDERLYING EXCITATION-CONTRACTION COUPLING IN HEART-MUSCLE [J].
CHENG, H ;
LEDERER, WJ ;
CANNELL, MB .
SCIENCE, 1993, 262 (5134) :740-744
[9]   Contribution of ryanodine receptor type 3 to Ca2+ sparks in embryonic mouse skeletal muscle [J].
Conklin, MW ;
Barone, V ;
Sorrentino, V ;
Coronado, R .
BIOPHYSICAL JOURNAL, 1999, 77 (03) :1394-1403
[10]   Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle [J].
Csordás, G ;
Thomas, AP ;
Hajnóczky, G .
TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (07) :269-275