Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis

被引:116
作者
Li, Q
Walter, EC
van der Veer, WE
Murray, BJ
Newberg, JT
Bohannan, EW
Switzer, JA
Hemminger, JC
Penner, RM [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92679 USA
[2] Univ Missouri, Dept Chem, Rolla, MO 65409 USA
[3] Univ Missouri, Grad Ctr Mat Res, Rolla, MO 65409 USA
关键词
D O I
10.1021/jp045032d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum disulfide nanowires and nanoribbons have been synthesized by a two-step, electrochemical/chemical synthetic method. In the first step, MoOx wires (a mixture Of MoO2 and MoO3) were electrodeposited size-selectively by electrochemical step-edge decoration on a highly oriented pyrolytic graphite (HOPG) surface. Then, MoOx, precursor wires were converted to MOS2 by exposure to H2S either at 500-700degreesC, producing "low-temperature" or LT MOS2 nanowires that were predominantly 2H phase, or above 800degreesC producing "high-temperature" or HT MOS2 ribbons that were predominantly 3R phase. The majority of these MOS2 wires and ribbons were more than 50 mum in length and were organized into parallel arrays containing hundreds of wires or ribbons. MoS2 nanostructures were characterized by X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, selected area electron diffraction, X-ray diffraction, UV-visible absorption spectrometry, and Raman spectroscopy. HT and LT MOS2 nanowires were structurally distinct: LT MOS2 wires were hemicylindrical in shape and nearly identical in diameter to the MoOx precursor wires from which they were derived. LT MOS2 wires were polycrystalline, and the internal structure consisted of many interwoven, multilayer strands Of MOS2; HT MOS2 ribbons were 50-800 nm in width and 3 - 100 nm thick, composed of planar crystallites of 3R-MoS2. These layers grew in van der Waals contact with the HOPG surface so that the c-axis of the 3R-MoS2 unit cell was oriented perpendicular to the plane of the graphite surface. Arrays Of MOS2 wires and ribbons could be cleanly separated from the HOPG surface and transferred to glass for electrical and optical characterization. Optical absorption measurements of HT MOS2 nanoribbons reveal a direct gap near 1.95 eV and two exciton peaks, A1 and B1, characteristic of 3R-MoS2. These exciton peaks shifted to higher energy by up to 80 meV as the wire thickness was decreased to 7 nm (eleven MoS2 layers). The energy shifts were proportional to 1/L-\\(2), and the effective masses were calculated. Current versus voltage curves for both LT and HT MOS2 nanostructures were probed as a function of temperature from -33 degreesC to 47 degreesC. Conduction was ohmic and mainly governed by the grain boundaries residing along the wires. The thermal activation barrier was found to be related to the degree of order of the crystallites and can be tuned from 126 meV for LT nanowires to 26 meV for HT nanoribbons.
引用
收藏
页码:3169 / 3182
页数:14
相关论文
共 96 条
[1]   Fabrication of a molecular self-assembled monolayer diode using nanoimprint lithography [J].
Austin, MD ;
Chou, SY .
NANO LETTERS, 2003, 3 (12) :1687-1690
[2]   TRANSMISSION SPECTRA OF SOME TRANSITION-METAL DICHALCOGENIDES .2. GROUP VIA - TRIGONAL PRISMATIC COORDINATION [J].
BEAL, AR ;
LIANG, WY ;
KNIGHTS, JC .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (24) :3540-&
[3]   KRAMERS-KRONIG ANALYSIS OF THE REFLECTIVITY SPECTRA OF 2H-MOS2, 2H-MOSE2 AND 2H-MOTE2 [J].
BEAL, AR ;
HUGHES, HP .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (05) :881-890
[4]   Nanowire resonant tunneling diodes [J].
Björk, MT ;
Ohlsson, BJ ;
Thelander, C ;
Persson, AI ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 81 (23) :4458-4460
[6]  
Chastain J., 1992, HDB XRAY PHOTOELECTR, V40, P221
[7]   SECOND-ORDER RAMAN-SPECTRUM OF MOS2 [J].
CHEN, JM ;
WANG, CS .
SOLID STATE COMMUNICATIONS, 1974, 14 (09) :857-860
[8]   Size-dependent spectroscopy of MoS2 nanoclusters [J].
Chikan, V ;
Kelley, DF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (15) :3794-3804
[9]   ELECTRONIC-STRUCTURE OF MOSE2, MOS2, AND WSE2 .2. THE NATURE OF THE OPTICAL BAND-GAPS [J].
COEHOORN, R ;
HAAS, C ;
DEGROOT, RA .
PHYSICAL REVIEW B, 1987, 35 (12) :6203-6206
[10]   CRYSTAL SIZE EFFECTS ON EXCITON ABSORPTION SPECTRUM OF WSE2 [J].
CONSADORI, F ;
FRINDT, RF .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (12) :4893-+