Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation

被引:41
作者
Robert, CP
Titterington, DM
机构
[1] INSEE, CREST, Stat Lab, F-92245 Malakoff, France
[2] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
关键词
bounded likelihood; identifiability; Gibbs sampler; non-informative prior; normal distribution; Poisson distribution; prior feedback; proper posterior distribution; simulated annealing;
D O I
10.1023/A:1008938201645
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper synthesizes a global approach to both Bayesian and likelihood treatments of the estimation of the parameters of a hidden Markov model in the cases of normal and Poisson distributions. The first step of this global method is to construct a non-informative prior based on a reparameterization of the model: this prior is to be considered as a penalizing and bounding factor from a likelihood point of view. The second step takes advantage of the special structure of the posterior distribution to build up a simple Gibbs algorithm. The maximum likelihood estimator is then obtained by an iterative procedure replicating the original sample until the corressponding Bayes posterior expectation stabilizes on a local maximum of the original likelihood function.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 11 条
[1]  
AITKIN M, 1991, J ROY STAT SOC B MET, V53, P111
[2]  
[Anonymous], APPL STAT
[3]  
ARCHER GEB, 1997, UNPUB PARAMETER ESTI
[4]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[5]   Calculating posterior distributions and modal estimates in Markov mixture models [J].
Chib, S .
JOURNAL OF ECONOMETRICS, 1996, 75 (01) :79-97
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
DUFLO M, 1996, COLL MATH APPL, V23
[8]  
Robertson H.M., 1993, Insect Molecular Biology, V2, P125, DOI 10.1111/j.1365-2583.1993.tb00132.x
[9]  
Rubinstein Reuven Y., 1981, Simulation and the Monte Carlo Method
[10]  
SHEPHARD N, 1994, BIOMETRIKA, V81, P115