BRIEF: Binary Robust Independent Elementary Features

被引:2330
作者
Calonder, Michael [1 ]
Lepetit, Vincent [1 ]
Strecha, Christoph [1 ]
Fua, Pascal [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
来源
COMPUTER VISION-ECCV 2010, PT IV | 2010年 / 6314卷
关键词
D O I
10.1007/978-3-642-15561-1_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to use binary strings as an efficient feature point descriptor, which we call BRIEF. We show that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests. Furthermore, the descriptor similarity can be evaluated using the Hamming distance, which is very efficient to compute, instead of the L-2 norm as is usually done. As a result, BRIEF is very fast both to build and to match. We compare it against SURF and U-SURF on standard benchmarks and show that it yields a similar or better recognition performance, while running in a fraction of the time required by either.
引用
收藏
页码:778 / 792
页数:15
相关论文
共 18 条
  • [1] Agrawal M, 2008, LECT NOTES COMPUT SC, V5305, P102, DOI 10.1007/978-3-540-88693-8_8
  • [2] [Anonymous], SSE4 PROGR REF
  • [3] [Anonymous], INT C COMP VIS
  • [4] [Anonymous], 2005, Learning Task-Specific Similarity
  • [5] Speeded-Up Robust Features (SURF)
    Bay, Herbert
    Ess, Andreas
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) : 346 - 359
  • [6] CALONDER M, 2009, INT C COMP VIS
  • [7] GIONIS A, 2004, INT C VER LARG DAT
  • [8] Keypoint recognition using randomized trees
    Lepetit, Vincent
    Fua, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (09) : 1465 - 1479
  • [9] LOWE D, 2004, COMPUTER VISION IMAG, V20, P91
  • [10] A performance evaluation of local descriptors
    Mikolajczyk, K
    Schmid, C
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) : 1615 - 1630