Linear-After-The-Exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis

被引:156
作者
Sanchez, JA [1 ]
Pierce, KE [1 ]
Rice, JE [1 ]
Wangh, LJ [1 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
关键词
D O I
10.1073/pnas.0305476101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional asymmetric PCR is inefficient and difficult to optimize because limiting the concentration of one primer lowers its melting temperature below the reaction annealing temperature. Linear-After-The-Exponential (LATE)-PCR describes a new paradigm for primer design that renders assays as efficient as symmetric PCR assays, regardless of primer ratio. LATE-PCR generates single-stranded products with predictable kinetics for many cycles beyond the exponential phase. LATE-PCR also introduces new probe design criteria that uncouple hybridization probe detection from primer annealing and extension, increase probe reliability, improve allele discrimination, and increase signal strength by 80-250% relative to symmetric PCR. These improvements in PCR are particularly useful for real-time quantitative analysis of target numbers in small samples. LATE-PCR is adaptable to high throughput applications in fields such as clinical diagnostics, biodefense, forensics, and DNA sequencing. We showcase LATE-PCR via amplification of the cystic fibrosis CFDelta508 allele and the Tay-Sachs disease TSD 1278 allele from single heterozygous cells.
引用
收藏
页码:1933 / 1938
页数:6
相关论文
共 31 条
[1]   BASE-BASE MISMATCHES - THERMODYNAMICS OF DOUBLE HELIX FORMATION FOR DCA3XA3G + DCT3YT3G (X, Y = A,C,G,T) [J].
ABOULELA, F ;
KOH, D ;
TINOCO, I ;
MARTIN, FH .
NUCLEIC ACIDS RESEARCH, 1985, 13 (13) :4811-4824
[2]   Minor groove binder-conjugated DNA probes for quantitative DNA detection by hybridization-triggered fluorescence [J].
Afonina, IA ;
Reed, MW ;
Lusby, E ;
Shishkina, IG ;
Belousov, YS .
BIOTECHNIQUES, 2002, 32 (04) :940-+
[3]   Thermodynamics and NMR of internal GT mismatches in DNA [J].
Allawi, HT ;
SantaLucia, J .
BIOCHEMISTRY, 1997, 36 (34) :10581-10594
[4]  
GYLLENSTEN UB, 1993, METHOD ENZYMOL, V218, P3
[5]   GENERATION OF SINGLE-STRANDED-DNA BY THE POLYMERASE CHAIN-REACTION AND ITS APPLICATION TO DIRECT SEQUENCING OF THE HLA-DQA LOCUS [J].
GYLLENSTEN, UB ;
ERLICH, HA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (20) :7652-7656
[6]   Current applications of single-cell PCR [J].
Hahn, S ;
Zhong, XY ;
Troeger, C ;
Burgemeister, R ;
Gloning, K ;
Holzgreve, W .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (01) :96-105
[7]  
Hayashi K, 1991, PCR Methods Appl, V1, P34
[8]   Real time quantitative PCR [J].
Heid, CA ;
Stevens, J ;
Livak, KJ ;
Williams, PM .
GENOME RESEARCH, 1996, 6 (10) :986-994
[9]   KINETIC PCR ANALYSIS - REAL-TIME MONITORING OF DNA AMPLIFICATION REACTIONS [J].
HIGUCHI, R ;
FOCKLER, C ;
DOLLINGER, G ;
WATSON, R .
BIO-TECHNOLOGY, 1993, 11 (09) :1026-1030
[10]   PRODUCTION OF SINGLE-STRANDED-DNA TEMPLATES BY EXONUCLEASE DIGESTION FOLLOWING THE POLYMERASE CHAIN-REACTION [J].
HIGUCHI, RG ;
OCHMAN, H .
NUCLEIC ACIDS RESEARCH, 1989, 17 (14) :5865-5865