Linear, nonlinear and mixed-regime analysis of electrostatic MEMS

被引:52
作者
Li, G [1 ]
Aluru, NR [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
electrostatic MEMS; linear and nonlinear theories; meshless method; mixed-regime approach;
D O I
10.1016/S0924-4247(01)00597-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrostatically actuated microstructures can undergo large deformations for certain geometric configurations and applied voltages. The use of linear theories in such cases can produce inaccurate results. By selecting a range of geometric parameters (such as beam lengths, thicknesses and gaps), we identify the regimes, where linear theories become inaccurate and necessitate the use of nonlinear theories. In cases where linear theories produce inaccurate results, we propose a mixed-regime approach to combine Linear and nonlinear theories. We show that a mixed-regime approach can be more efficient compared to a full nonlinear simulation of the electrostatically actuated structure. This paper also proposes the use of meshless techniques for efficient simulation of linear and nonlinear behavior in electrostatic MEMS. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 14 条
[1]   An efficient numerical technique for electromechanical simulation of complicated microelectromechanical structures [J].
Aluru, NR ;
White, J .
SENSORS AND ACTUATORS A-PHYSICAL, 1997, 58 (01) :1-11
[2]   A multilevel newton method for mixed-energy domain simulation of MEMS [J].
Aluru, NR ;
White, J .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1999, 8 (03) :299-308
[3]   Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation [J].
Aluru, NR ;
Li, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (10) :2373-2410
[4]   A reproducing kernel particle method for meshless analysis of microelectromechanical systems [J].
Aluru, NR .
COMPUTATIONAL MECHANICS, 1999, 23 (04) :324-338
[5]  
Aluru NR, 2000, INT J NUMER METH ENG, V47, P1083, DOI 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO
[6]  
2-N
[7]  
Bathe K.-J., 1975, International Journal for Numerical Methods in Engineering, V9, P353, DOI 10.1002/nme.1620090207
[8]  
Chen Y, 2000, 2000 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, TECHNICAL PROCEEDINGS, P477
[9]  
Forsythe G.E., 1960, FINITE DIFFERENCE ME
[10]  
GILBERT JR, 1995, MICRO ELECTRO MECHANICAL SYSTEMS - IEEE PROCEEDINGS, 1995, P122, DOI 10.1109/MEMSYS.1995.472542