Some results on the design of brushless DC wheel motor using SQP and GA

被引:23
作者
Moussouni, F. [1 ]
Brisset, S. [1 ]
Brochet, P. [1 ]
机构
[1] Ecole Cent Lille, L2EP, F-59651 Villeneuve Dascq, France
关键词
sequential quadratic programming; genetic algorithms; mixed-integer optimization; multiobjective optimization;
D O I
10.3233/JAE-2007-913
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sequential quadratic programming and genetic algorithms are finely tuned on the optimal design of a brushless DC wheel motor. Combining both methods, a hybrid approach is tested. Multiobjective optimizations are performed using Nondominated Sorting Genetic Algorithm, Strength Pareto Evolutionary Algorithm, and a variable weighted sum of objectives with the sequential quadratic programming. The Pareto fronts are compared in term of accuracy, uniformity, and coverage criteria using some quality indicators.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 9 条
[1]  
[Anonymous], NUMERICAL METHODS FO
[2]   Analytical model for the optimal design of a brushless DC wheel motor [J].
Brisset, S ;
Brochet, P .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2005, 24 (03) :829-848
[3]   Mechanical design optimization by mixed-variable evolutionary programming [J].
Cao, YJ ;
Wu, QH .
PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), 1997, :443-446
[4]  
Deb K., 2002, IEEE T EVOL COMP, V6
[5]  
Deb K, 2011, Multi-objective optimization using evolutionary algorithm
[6]   Parameter control in evolutionary algorithms [J].
Eiben, AE ;
Hinterding, R ;
Michalewicz, Z .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) :124-141
[7]   A RAPIDLY CONVERGENT DESCENT METHOD FOR MINIMIZATION [J].
FLETCHER, R ;
POWELL, MJD .
COMPUTER JOURNAL, 1963, 6 (02) :163-&
[8]  
LIN YC, 1999, HYBRID METHOD EVOLUT, V3
[9]  
Zitzler E., 2001, SPEA2 IMPROVING STRE, V103, DOI DOI 10.3929/ETHZ-A-004284029