Structure of a genetically engineered molecular motor

被引:53
作者
Kliche, W [1 ]
Fujita-Becker, S [1 ]
Kollmar, M [1 ]
Manstein, DJ [1 ]
Kull, FJ [1 ]
机构
[1] Max Planck Inst Med Res, Dept Biophys, D-69120 Heidelberg, Germany
关键词
alpha-actinin; Dictyostelium discoideum; lever arm; myosin; protein engineering;
D O I
10.1093/emboj/20.1.40
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular motors move unidirectionally along polymer tracks, producing movement and force in an ATP-dependent fashion. They achieve this by amplifying small conformational changes in the nucleotide-binding region into force-generating movements of larger protein domains. We present the 2.8 Angstrom resolution crystal structure of an artificial actin-based motor. By combining the catalytic domain of myosin II with a 130 Angstrom conformational amplifier consisting of repeats 1 and 2 of alpha -actinin, we demonstrate that it is possible to genetically engineer single-polypeptide molecular motors with precisely defined lever arm lengths and specific motile properties. Furthermore, our structure shows the consequences of mutating a conserved salt bridge in the nucleotide-binding region. Disruption of this salt bridge, which is known to severely inhibit ATP hydrolysis activity, appears to interfere with formation of myosin's catalytically active 'closed' conformation. Finally, we describe the structure of alpha -actinin repeats 1 and 2 as being composed of two rigid, triple-helical bundles linked by an uninterrupted alpha -helix. This fold is very similar to the previously described structures of alpha -actinin repeats 2 and 3, and alpha -spectrin repeats 16 and 17.
引用
收藏
页码:40 / 46
页数:7
相关论文
共 34 条
[1]   Myosin motors with artificial lever arms [J].
Anson, M ;
Geeves, MA ;
Kurzawa, SE ;
Manstein, DJ .
EMBO JOURNAL, 1996, 15 (22) :6069-6074
[2]   THE STRUCTURE AND FUNCTION OF ALPHA-ACTININ [J].
BLANCHARD, A ;
OHANIAN, V ;
CRITCHLEY, D .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 1989, 10 (04) :280-289
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Structural genomics: beyond the Human Genome Project [J].
Burley, SK ;
Almo, SC ;
Bonanno, JB ;
Capel, M ;
Chance, MR ;
Gaasterland, T ;
Lin, DW ;
Sali, A ;
Studier, FW ;
Swaminathan, S .
NATURE GENETICS, 1999, 23 (02) :151-157
[5]   Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction [J].
Corrie, JET ;
Brandmeier, BD ;
Ferguson, RE ;
Trentham, DR ;
Kendrick-Jones, I ;
Hopkins, SC ;
van der Heide, UA ;
Goldman, YE ;
Sabido-David, C ;
Dale, RE ;
Criddle, S ;
Irving, M .
NATURE, 1999, 400 (6743) :425-430
[6]   Structure of the α-actinin rod:: Molecular basis for cross-linking of actin filaments [J].
Djinovic-Carugo, K ;
Young, P ;
Gautel, M ;
Saraste, M .
CELL, 1999, 98 (04) :537-546
[7]   Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: Visualization of the pre-power stroke state [J].
Dominguez, R ;
Freyzon, Y ;
Trybus, KM ;
Cohen, C .
CELL, 1998, 94 (05) :559-571
[8]  
Endow SA, 2000, J CELL SCI, V113, P1311
[9]  
ESNOUF RM, 1997, J MOL GRAPH MODEL, V15, P112
[10]   X-RAY STRUCTURES OF THE MYOSIN MOTOR DOMAIN OF DICTYOSTELIUM-DISCOIDEUM COMPLEXED WITH MGADP-CENTER-DOT-BEFX AND MGADP-CENTER-DOT-ALF4- [J].
FISHER, AJ ;
SMITH, CA ;
THODEN, JB ;
SMITH, R ;
SUTOH, K ;
HOLDEN, HM ;
RAYMENT, I .
BIOCHEMISTRY, 1995, 34 (28) :8960-8972