Brownian Motion of Graphene

被引:177
作者
Marago, Onofrio M. [1 ]
Bonaccorso, Francesco [2 ]
Saija, Rosalba [3 ]
Privitera, Giulia [2 ]
Gucciardi, Pietro G. [1 ]
Iati, Maria Antonia [1 ]
Calogero, Giuseppe [1 ]
Jones, Philip H. [4 ]
Borghese, Ferdinando [3 ]
Denti, Paolo [3 ]
Nicolosi, Valeria [5 ]
Ferrari, Andrea C. [2 ]
机构
[1] CNR Ist & Proc Chim Fis, I-98158 Messina, Italy
[2] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[3] Univ Messina, Dipartimento Fis Materia & Ingn Elettron, Messina, Italy
[4] UCL, Dept Phys & Astron, London WC1E 6BT, England
[5] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
Brownian motion; optical tweezers; graphene; electromagnetic scattering theory; RAMAN-SPECTROSCOPY; CARBON NANOTUBES; OPTICAL TWEEZERS; EXFOLIATION; PARTICLES; PHOTONICS;
D O I
10.1021/nn1018126
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical Yapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.
引用
收藏
页码:7515 / 7523
页数:9
相关论文
共 56 条
[1]  
[Anonymous], 2004, Equilibrium and nonequilibrium statistical thermodynamics
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   Thermodynamics and kinetics of a Brownian motor [J].
Astumian, RD .
SCIENCE, 1997, 276 (5314) :917-922
[4]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[5]   Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation [J].
Bonaccorso, F. ;
Hasan, T. ;
Tan, P. H. ;
Sciascia, C. ;
Privitera, G. ;
Di Marco, G. ;
Gucciardi, P. G. ;
Ferrari, A. C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (41) :17267-17285
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[7]   Radiation torque and force on optically trapped linear nanostructures [J].
Borghese, F. ;
Denti, P. ;
Saija, R. ;
Iati, M. A. ;
Marago, O. M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[8]   Optical trapping of nonspherical particles in the T-matrix formalism [J].
Borghese, Ferdinando ;
Denti, Paolo ;
Saija, Rosalba ;
Iati, Maria Antonia .
OPTICS EXPRESS, 2007, 15 (19) :11984-11998
[9]  
Brown Robert, 1828, The Philosophical Magazine, V4, P161, DOI [10.1080/14786442808674769, DOI 10.1080/14786442808674769]
[10]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)