DCT/DST and Gauss-Markov fields: Conditions for equivalence

被引:20
作者
Moura, JMF [1 ]
Bruno, MGS [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
关键词
D O I
10.1109/78.709549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The correspondence addresses the intriguing question of which random models are equivalent to the discrete cosine transform (DCT) and discrete sine transform (DST). Common knowledge states that these transforms are asymptotically equivalent to first-order Gauss causal Markov random processes. We establish that the DCT and the DST are exactly equivalent to homogeneous one-dimensional (I-D) and two-dimensional (2-D) Gauss noncausal Markov random fields defined on finite lattices with appropriate boundary conditions.
引用
收藏
页码:2571 / 2574
页数:4
相关论文
共 5 条
[1]   SINUSOIDAL FAMILY OF UNITARY TRANSFORMS [J].
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (04) :356-365
[2]  
Jain AK., 1989, Fundamentals of Digital Image Processing
[3]   RECURSIVE STRUCTURE OF NONCAUSAL GAUSS-MARKOV RANDOM-FIELDS [J].
MOURA, JMF ;
BALRAM, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :334-354
[4]   DIAGONALIZING PROPERTIES OF THE DISCRETE COSINE TRANSFORMS [J].
SANCHEZ, V ;
GARCIA, P ;
PEINADO, AM ;
SEGURA, JC ;
RUBIO, AJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (11) :2631-2641
[5]   Generating matrices for the discrete sine transforms [J].
Sanchez, V ;
Peinado, AM ;
Segura, JC ;
Garcia, P ;
Rubio, AJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (10) :2644-2646