Elastic knots in Euclidean 3-space

被引:10
作者
Von der Mosel, H [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1999年 / 16卷 / 02期
关键词
D O I
10.1016/S0294-1449(99)80010-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the problem of minimizing the curvature functional integral k(2) ds on isotopy classes of closed knotted curves in R-3. We show existence of minimizers under a given topological knot type and develop a regularity theory by analyzing different touching situations. (C) Elsevier, Paris.
引用
收藏
页码:137 / 166
页数:30
相关论文
共 18 条
[1]  
[Anonymous], ANN MATH STUDIES
[2]   REDUCTION FOR CONSTRAINED VARIATIONAL-PROBLEMS AND INTEGRAL-K2/2DS [J].
BRYANT, R ;
GRIFFITHS, P .
AMERICAN JOURNAL OF MATHEMATICS, 1986, 108 (03) :525-570
[3]  
Dierkes U., 1992, GRUNDLEHREN MATH WIS, V295
[4]  
EULER L, BOUSQUET LANSANNAE 1, V24
[5]   MOBIUS ENERGY OF KNOTS AND UNKNOTS [J].
FREEDMAN, MH ;
HE, ZX ;
WANG, ZH .
ANNALS OF MATHEMATICS, 1994, 139 (01) :1-50
[6]   VARIATIONAL PROBLEMS WITH OBSTACLES AND A VOLUME CONSTRAINT [J].
HILDEBRANDT, S ;
WENTE, HC .
MATHEMATISCHE ZEITSCHRIFT, 1973, 135 (01) :55-68
[7]  
Irrgang R., 1933, MATH Z, V37, P381
[8]  
KUSNER R, 1996, AMS IP STUDIES ADV M, V2, P570
[9]   CURVE STRAIGHTENING AND A MINIMAX ARGUMENT FOR CLOSED ELASTIC CURVES [J].
LANGER, J ;
SINGER, DA .
TOPOLOGY, 1985, 24 (01) :75-88
[10]  
LANGER J, 1984, J DIFFER GEOM, V20, P1