Adeno-associated virus (AAV) vectors in the CNS

被引:87
作者
McCown, TJ [1 ]
机构
[1] Univ N Carolina, Sch Med, Gene Therapy Ctr, Chapel Hill, NC 27599 USA
关键词
AAV; viral vectors; gene therapy; neurological disorders;
D O I
10.2174/1566523054064995
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Adeno-associated virus (AAV) vectors exhibit a number of properties that have made this vector system an excellent choice for both CNS gene therapy and basic neurobiological investigations. In vivo, the preponderance of AAV vector transduction occurs in neurons where it is possible to obtain long-term, stable gene expression with very little accompanying toxicity. Promoter selection, however, significantly influences the pattern and longevity of neuronal transduction distinct from the tropism inherent to AAV vectors. AAV vectors have successfully manipulated CNS function using a wide variety of approaches including expression of foreign genes, expression of endogenous genes, expression of antisense RNA and expression of RNAi. With the discovery and characterization of different AAV serotypes, the potential patterns of in vivo vector transduction have been expanded substantially, offering alternatives to the more studied AAV 2 serotype. Furthermore, the development of specific AAV chimeras offers the potential to further refine targeting strategies. These different AAV serotypes also provide a solution to the immune silencing that proves to be a realistic likelihood given broad exposure of the human population to the AAV 2 serotype. These advantageous CNS properties of AAV vectors have fostered a wide range of clinically relevant applications including Parkinson's disease, lysosomal storage diseases, Canavan's disease, epilepsy, Huntington's disease and ALS. Each individual application, however, presents a unique set of challenges that must be solved in order to attain clinically effective gene therapies.
引用
收藏
页码:333 / 338
页数:6
相关论文
共 65 条
[1]   Convection-enhanced delivery of AAV vector in parkinsonian monkeys;: In vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach [J].
Bankiewicz, KS ;
Eberling, JL ;
Kohutnicka, M ;
Jagust, W ;
Pivirotto, P ;
Bringas, J ;
Cunningham, J ;
Budinger, TF ;
Harvey-White, J .
EXPERIMENTAL NEUROLOGY, 2000, 164 (01) :2-14
[2]   SEROEPIDEMIOLOGIC STUDY OF ADENOVIRUS-ASSOCIATED VIRUS INFECTION IN INFANTS AND CHILDREN [J].
BLACKLOW, NR ;
HOGGAN, MD ;
SERENO, MS ;
BRANDT, CD ;
KIM, HW ;
PARROTT, RH ;
CHANOCK, RM .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1971, 94 (04) :359-&
[3]  
BLACKLOW NR, 1968, J NATL CANCER I, V40, P319
[4]   Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system [J].
Burger, C ;
Gorbatyuk, OS ;
Velardo, MJ ;
Peden, CS ;
Williams, P ;
Zolotukhin, S ;
Reier, PJ ;
Mandel, RJ ;
Muzyczka, N .
MOLECULAR THERAPY, 2004, 10 (02) :302-317
[5]   Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors [J].
Chao, HJ ;
Liu, YB ;
Rabinowitz, J ;
Li, CW ;
Samulski, RJ ;
Walsh, CE .
MOLECULAR THERAPY, 2000, 2 (06) :619-623
[6]   Gene transfer and expression in oligodendrocytes under the control of myelin basic protein transcriptional control region mediated by adeno-associated virus [J].
Chen, H ;
McCarty, DM ;
Bruce, AT ;
Suzuki, K ;
Suzuki, K .
GENE THERAPY, 1998, 5 (01) :50-58
[7]   Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles [J].
Chiorini, JA ;
Yang, L ;
Liu, YJ ;
Safer, B ;
Kotin, RM .
JOURNAL OF VIROLOGY, 1997, 71 (09) :6823-6833
[8]   Cloning and characterization of adeno-associated virus type 5 [J].
Chiorini, JA ;
Kim, F ;
Yang, L ;
Kotin, RM .
JOURNAL OF VIROLOGY, 1999, 73 (02) :1309-1319
[9]   Immune responses to adenovirus and adeno-associated virus in humans [J].
Chirmule, N ;
Propert, KJ ;
Magosin, SA ;
Qian, Y ;
Qian, R ;
Wilson, JM .
GENE THERAPY, 1999, 6 (09) :1574-1583
[10]   Dopaminergic neurons protected from degeneration by GDNF gene therapy [J].
ChoiLundberg, DL ;
Lin, Q ;
Chang, YN ;
Chiang, YL ;
Hay, CM ;
Mohajeri, H ;
Davidson, BL ;
Bohn, MC .
SCIENCE, 1997, 275 (5301) :838-841