An essential regulatory role for macrophage migration inhibitory factor in T-cell activation

被引:624
作者
Bacher, M
Metz, CN
Calandra, T
Mayer, K
Chesney, J
Lohoff, M
Gemsa, D
Donnelly, T
Bucala, R
机构
[1] PICOWER INST MED RES,MANHASSET,NY 11030
[2] UNIV MARBURG,INST IMMUNOL,D-35037 MARBURG,GERMANY
[3] UNIV ERLANGEN NURNBERG,INST CLIN MICROBIOL,D-91054 ERLANGEN,GERMANY
关键词
cytokines; glucocorticoid; steroid; interleukin; 2; interferon gamma;
D O I
10.1073/pnas.93.15.7849
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to ''override'' or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important. regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses.
引用
收藏
页码:7849 / 7854
页数:6
相关论文
共 32 条
[1]   COMPARISON OF 3 ACTIN-CODING SEQUENCES IN THE MOUSE - EVOLUTIONARY RELATIONSHIPS BETWEEN THE ACTIN GENES OF WARM-BLOODED VERTEBRATES [J].
ALONSO, S ;
MINTY, A ;
BOURLET, Y ;
BUCKINGHAM, M .
JOURNAL OF MOLECULAR EVOLUTION, 1986, 23 (01) :11-22
[2]  
ARYA SK, 1984, J IMMUNOL, V133, P273
[3]   IMMUNOSUPPRESSION BY GLUCOCORTICOIDS - INHIBITION OF NF-KAPPA-B ACTIVITY THROUGH INDUCTION OF I-KAPPA-B SYNTHESIS [J].
AUPHAN, N ;
DIDONATO, JA ;
ROSETTE, C ;
HELMBERG, A ;
KARIN, M .
SCIENCE, 1995, 270 (5234) :286-290
[4]   MIF IS A PITUITARY-DERIVED CYTOKINE THAT POTENTIATES LETHAL ENDOTOXEMIA [J].
BERNHAGEN, J ;
CALANDRA, T ;
MITCHELL, RA ;
MARTIN, SB ;
TRACEY, KJ ;
VOELTER, W ;
MANOGUE, KR ;
CERAMI, A ;
BUCALA, R .
NATURE, 1993, 365 (6448) :756-759
[5]   PURIFICATION, BIOACTIVITY, AND SECONDARY STRUCTURE-ANALYSIS OF MOUSE AND HUMAN MACROPHAGE-MIGRATION INHIBITORY FACTOR (MIF) [J].
BERNHAGEN, J ;
MITCHELL, RA ;
CALANDRA, T ;
VOELTER, W ;
CERAMI, A ;
BUCALA, R .
BIOCHEMISTRY, 1994, 33 (47) :14144-14155
[6]   An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction [J].
Bernhagen, J ;
Bacher, M ;
Calandra, T ;
Metz, CN ;
Doty, SB ;
Donnelly, T ;
Bucala, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (01) :277-282
[7]   CONTROL OF CACHECTIN (TUMOR-NECROSIS-FACTOR) SYNTHESIS - MECHANISMS OF ENDOTOXIN RESISTANCE [J].
BEUTLER, B ;
KROCHIN, N ;
MILSARK, IW ;
LUEDKE, C ;
CERAMI, A .
SCIENCE, 1986, 232 (4753) :977-980
[8]   MECHANISM OF A REACTION IN VITRO ASSOCIATED WITH DELAYED-TYPE HYPERSENSITIVITY [J].
BLOOM, BR ;
BENNETT, B .
SCIENCE, 1966, 153 (3731) :80-&
[9]   MACROPHAGE IS AN IMPORTANT AND PREVIOUSLY UNRECOGNIZED SOURCE OF MACROPHAGE-MIGRATION INHIBITORY FACTOR [J].
CALANDRA, T ;
BERNHAGEN, J ;
MITCHELL, RA ;
BUCALA, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (06) :1895-1902
[10]   MIF AS A GLUCOCORTICOID-INDUCED MODULATOR OF CYTOKINE PRODUCTION [J].
CALANDRA, T ;
BERNHAGEN, J ;
METZ, CN ;
SPIEGEL, LA ;
BACHER, M ;
DONNELLY, T ;
CERAMI, A ;
BUCALA, R .
NATURE, 1995, 377 (6544) :68-71